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Abstract

We present a new robust variant of the Restricted Block Relocation Problem. We also

propose a novel Integer Linear Programming formulation to solve the problem to exact

optimality.
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1 The Block Relocation Problem

The Block Relocation problem (BRP) is defined on a given set of blocks (items) B = {b1, .., bn}
located in the stacks S = {s1, ..., sm} of a storage area (bay). Each stack has a given height
(capacity) h and the blocks are stored in / retrieved from a stack according to a First-In
Last-Out policy. The blocks of B must leave the bay in a prescribed order π : {1, ...n} → B,
where π[i] is the i-th block to exit. When a block bi leaves the bay, it must be retrieved from
the stack sj where it is currently located. Therefore, all the blocks located above bi must be
reshuffled (i.e. removed from sj and reallocated in some other stacks of the bay). In the rest
of the paper, for any given a ∈ Z+, we will use the notation [a] for the set {1, ..., a}.

The Block Relocation Problem consists of minimizing the total number of block reshuffles
needed to retrieve all the blocks of B from the bay. The problem arises from the management
of a container bay, where a certain number of containers are piled into stacks. The retrieving
operations are performed by cranes, which can only access the topmost container of each
stack. Therefore, in order to retrieve a certain container, all the containers allocated on its
top (blocking containers) must be reshuffled. These relocation operations are very expensive
and their number must be minimized. The Block Relocation Problem has a crucial role in the
logistics of containers and, since the number of containers shipped worldwide is dramatically
growing, the problem has been widely investigated in the last years.

Here we consider the restricted BRP (RBRP), where only blocks above the next one to be
retrieved can be reshuffled. Indeed, in order to simplify the process and reduce the number of
possible movements in each step, the restricted policy is often used in the applications [8, 1].
In Figure 1 we give an example of a RBRP instance with 5 blocks initially located in a yard
with 3 stacks s1, s2, s3 of height 3. The retrieval order of the blocks is (b1, b2, b3, b4, b5). In the
(optimal) solution illustrated in the picture, block b4 is reshuffled from stack s1 to stack s3 in
order to retrieve block b1, and then to stack s2 when block b3 has to leave the yard. Hence,
the total number of reshuffles (emphasized in gray in the picture) required by this solution
is 2. Restricted BRP is known to be NP-hard and it is also very difficult to be solved in
practice. For complexity results, refer to [2, 4, 5, 7]. For such problem, a sequence of exact



algorithms have been produced in the literature, that can be grouped into methods based
on Integer Linear Programming (ILP) formulations and search-based methods. The most
effective ILP-based method is the one recently proposed in [3]. The search-based algorithms
include approaches that use different techniques to explore the solution space. Most of them
implement a combinatorial Branch &Bound procedure. In particular, the algorithm proposed
in [9] is definitively the most effective one in this second group.
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FIG. 1: An optimal solution to the Restricted Block Relocation Problem.

2 A robust variant of RBRP

In this paper, we investigate a possible robust model for the Restricted Block Relocation
Problem, that we denote as robRBRP. In such a model we make the hypothesis that there exists
a value q ∈ [n] such that the first q items are retrieved following a given order (π0(1), ..., π0(q)),
while for the remaining n − q items, it is given set of d alternative retrieval orders π1, ..., πd,
with πl : {q + 1, ..., n} → B, for each l ∈ [d]. Only one of these orders (scenarios), say
π∗ ∈ {π1, ..., πd}, will be operative at the end but this will be known only after the retrieval
of the first q blocks. The goal here is to decide how to realize the reshuffle operations needed
to retrieve the first q items in order to minimize the total number of reshuffles needed in the
worst case scenario. This is similar to the model proposed in [10], where the retrieval order
of the items is completely unknown at the beginning and it is revealed only over time. In
that case, any retrieving order can represent a possible scenario and the authors propose an
on-line heuristic strategy with a guaranteed competitive ratio. Instead, here only certain given
scenarios must be considered. This can realistically represent many cases arising in practical
applications where the order of the first items that needs to be retrieved can be given as fixed
while the uncertainty comes from the fact that, after a certain time horizon, the arrival to the
container yard of two or more given trains (or vessels, or trucks), each in charge to retrieve a
certain set of items, can not be completely predicted. Therefore, in this scenario, only a few
variants of an ideal order have to be considered.

2.1 Upper and lower bounds to the optimal solution of robRBRP

A possible approach to construct a feasible solution to the problem is the following two phases
approach. First one constructs the optimal solution in order to retrieve items π0(1), ..., π0(q)
within the minimal number of reshuffles. Then, the other n − q items are retrieved in the
sequence π∗(q + 1), ..., π∗(n), for the revealed order π∗ ∈ {π1, ..., πd}. The total number of
reshuffles performed in the first and in the second phase of the algorithm represents an upper
bound to the optimal solution of robRBRP. The possible gap between the two values is due
to the delayed knowledge of π∗. Indeed, consider the example in Figure 2. Here, 6 items
are initially located in a yard with 3 stacks of height 5. Moreover, we have q = 2, π0(1) =
b1, π0(2) = b2, and two alternative orders π1 and π2 with π1(3) = b3, π1(4) = b4, π1(5) =
b5, π1(6) = b6 and π2(3) = b4, π2(4) = b3, π2(5) = b5, π2(6) = b6. In order to retrieve block b1,
we have to reshuffle b3, b6, b5, and b4. According to solution X, we can move all these blocks in
stack s3. Then also b2 can exit the yard with no further reshuffles. Therefore, X represents the
solution that minimizes the number of reshuffles (4) needed to retrieve the first q blocks. An
alternative solution is the one defined by Y . In this case, b6, b5 and b4 are initially moved to



stack s3, while b3 is allocated above b2 in stack s2. Then, in order to retrieve b2, b3 needs to be
reshuffled again. Therefore, according Y , we need 5 reshuffles to retrieve b1 and b2. Now, once
b1 and b2 have been retrieved we know which one of the two orders π1 and π2 does actually
apply. It is not difficult to see that, starting from solution X, we need at least 4 (in case order
π1 is realized) or 2 (in case π2 applies) more reshuffles. Instead, if we start from solution Y ,
we can retrieve, for both possible orders π1 and π2, all the remaining blocks with no further
reshuffle.

s1 s2 s3

b1

b4

b5

b6

b3

b2

Initial yard

b1 b2 b3

b6

b5

b4

Retrieve b1

b2 b3

b6

b5

b4

Retrieve b2

b3

b6

b5

b4

b1 b2

b3

b6

b5

b4

Retrieve b1

b2

b3

b6

b5

b4

b3 b2 b6

b5

b4

Retrieve b2

b3 b6

b5

b4

Solution X Solution Y

FIG. 2: Two possible solutions to retrieve items b1 and b2

Moreover, observe that the optimal solution of the RBRP problem defined as also the order
π∗ is known in advance is actually a lower bound for the optimal value of robRBRP. We
compared the upper and lower bounds defined above on a data set of instances introduced in
[6]. In particular, we solved the subproblems of the two phases heuristic algorithm as well as
the RBRP problem that define the lower bound, by applying the exact procedure introduced
in [3]. The results of the computational experiments are illustrated in Table 1. Here, each
row represents a set of 40 instances of n blocks initially allocated in a yard with w stacks of
height h. For each group of instances, first we considered 3 possible values for q: n

3
, n

2
, and

2n
3 and then we randomly generated d = n − q possible scenarios. In columns LBmin, LBmean,

and LBmax (UBmin, UBmean, and UBmax) we report the mean (among all the instances of the
group) of the minimum, mean and maximum value of the lower bound (upper bound, resp.)
obtained among all the considered scenarios. As you can see, the average mean percentage gap
among lower and upper bounds varies from about 17%, for the smallest instances, up to about
56%, for the largest ones.

(n,m,h) q
n

d LBmin LBmean LBmax UBmin UBmean UBmax

(21,7,5) 1
3

14 7.0 9.2 11.5 14.5 16.7 18.9

(21,7,5) 1
2

11 7.8 9.2 10.7 16.4 18.3 20.0

(21,7,5) 2
3

7 8.5 9.2 10.0 16.8 17.9 19.2

(24,6,6) 1
3

16 11.3 13.9 16.7 20.9 23.9 27.2

(24,6,6) 1
2

12 12.6 14.2 15.9 25.2 27.4 29.5

(24,6,6) 2
3

8 13.2 14.0 14.8 27.7 29.1 30.3

(35,7,7) 1
3

24 21.0 24.7 28.5 41.4 45.6 50.0

(35,7,7) 1
2

18 22.3 24.6 27.2 52.4 55.5 58.5

(35,7,7) 2
3 12 23.3 24.6 25.9 54.4 56.4 58.3

TAB. 1: Upper and lower bound values for the robRBRP

2.2 An Integer Linear Programming formulation for robRBRP

Here we propose an ILP based exact approach to solve our robust variant of the problem.
In particular, we derive a suitable ILP formulation (in the following denoted rob3BRP) for
robRBRP, starting from the one presented in [3] for the restricted BRP (in the following,
3BRP). The 3BRP formulation makes use of two kind of binary variables, each defined for all



i ∈ [n], j ∈ [w], and t ∈ [i]: xi,j,t (that is 1 if item π(i) is located in stack j at time t) and
yi,j,t (that is 1 if item π(i) is reshuffled from stack j at time t). The rob3BRP formulation
uses different copies of the variables x and y. In particular, for all t ∈ {1, ..., q}, we consider
the variables x0

i,j,t and y0
i,j,t. Then, for t ∈ [q + 1, ..., n] we will have instead s copies of such

variables (xl
i,j,t, yl

i,j,t), each indexed by a different scenario l ∈ [d].
The constraints of the rob3BRP formulation are derived from the ones of 3BRP as follows:

i) each variable xi,j,t (yi,j,t) defined on a time index t ∈ [q], is replaced by the corresponding
variable x0

i,j,t (y0
i,j,t, resp.); ii) each constraint containing one ore more variables defined on a

time period t > q is duplicated d times and, in each copy, such variables are substituted by
the ones indexed by the corresponding scenario. Then we have to match the values of the x0

and y0 variables with those of xl and yl at time q. This is done by adding the constraints
x0

i,j,q = xl
i,j,q, and y0

i,j,q = yl
i,j,q, for all i ∈ [n], j ∈ [w], and l ∈ [d]. Moreover, in order to

minimize the number of reshuffle operations in the worst-case scenario, we need to introduce
a dummy variable Z and the constraints Z ≥

∑
i∈[n]

∑
j∈[w]

∑
t∈{q+1,...,n} yl

i,j,t, for all l ∈ [d].

Finally, the objective function is to minimize
∑

i∈[n]

∑
j∈[w]

∑
t∈[q] y0

i,j,t + Z.
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