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Abstract

We consider the infinite horizon discrete control problem on stochastic networks with
discounted costs and propose an approach for determining the solutions of the problem
based on linear programming. We formulate a linear programming model for the con-
sidered problem and propose polynomial time algorithms for determining the optimal
stationary strategies of the problem on stochastic networks with discounted costs. Based
on duality theory of linear programming we show also how to determine the solution of
the problem by using efficient iterative procedures.
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1 Introduction and problem formulation
In [4, 5] the following infinite horizon stochastic control problem on networks has been consid-
ered. Let a discrete time system L with a finite set of states X be given. At every discrete
moment of time t = 0, 1, 2, . . . the state of L is x(t) ∈ X. The dynamics of the system is
described by a directed graph of states’ transitions G = (X,E) where the vertex set X corre-
sponds to the set of states of L and a directed edge e = (x, y) ∈ E expresses the possibility of
the dynamical system to pass from the state x = x(t) ∈ X to the state y = x(t + 1) ∈ X at
every discrete moment of time t = 0, 1, 2, . . .. To each directed edge e = (x, y) ∈ E a cost ce

that expresses the cost of the system L to pass from the state x to the state y is associated.
Each such cost at every next discrete moment of time is rated with a given discount factor
γ, 0 < γ < 1. So, if system L at the moment of time t passes from a state x = x(t) ∈ X to
a state y = x(t + 1) ∈ X through the directed edge e = (x, y) ∈ E then the cost of states’
transition of the system is γtce. We consider the control problem when the set of states X
consists of two disjoint subsets XC and XN (X = XC ∪XN , XC ∩XN = ∅) where XC repre-
sents the subset of controllable states for L and XN is the subset of uncontrollable states for L.
This means that the decision maker in this problem may control the system only in the states
x ∈ XC and can make a states’ transition of L from a state x = x(t) to the state y = x(t+ 1)
through the directed edge e = (x, y) ∈ E at every discrete moment of time; if x = x(t) ∈ XN

then the decision maker is unable to control the system L in x = x(t) because the system
passes to the next state y = x(t+ 1) ∈ X randomly according to a given distribution {pe} on
E(x) = {e = (x, y) : (x, y) ∈ E}, where

∑
e∈E(x) pe = 1, pe ≥ 0,∀e ∈ E(x). So, if the starting

state x0 = x(0) is given then the control process of L on G is the following: if x(0) ∈ XC then
the decision maker chooses a transition of L from x0 to a state x1 such that e0 = (x0, x1) ∈ E
where x1 = x(1). If x0 ∈ XN then x1 is chosen randomly according to the distribution {px,y} on
E(x0). At the moment of time t = 1 if x1 ∈ XC then the decision maker chooses a transition for
L from x1 to a state x2 such that e1 = (x1, x2) where x2 = x(2), otherwise (in the case x1 ∈ XN )



the state x1 is chosen randomly according to the distribution {px,y} on E(x0) and so on indefi-
nitely. So, a stationary strategy (or a stationary control) for the system L on G can be defined
as a map s : x 7→ y ∈ X(x) for x ∈ XC , where X(x) = {y ∈ X| (x, y) ∈ E}. For a given start-
ing state x0 and a given stationary strategy s the total expected discounted cost σx0(s) for the
dynamical system L is defined as follows. The strategy s induces the graph Gs = (X,Es∪EN ),
where Es = {e = (x, y) ∈ E|x ∈ XC , y = s(x)}, EN = {e = (x, y)|x ∈ XN , , y ∈ X}. This
graph corresponds to a Markov process with a transition probability matrix P s = (ps

x,y), where

ps
x,y =


px,y, if x ∈ XN and y = X;
1, if x ∈ XC and y = s(x);
0, if x ∈ XC and y 6= s(x).

For this Markov process with associated costs ce, e ∈ Es ∪ EN and given starting state x0 we
can define the total expected discounted cost σx0(s) (see [2]). So, we can consider the problem
of determining the strategy s∗ for which

σx0(s∗) = min
s
σx0(s).

The strategy s∗ corresponds to an optimal stationary strategy for the stochastic control
problem on G with discounted costs. In [4, 5] it is shown that the optimal stationary strategy s∗
for the control problem with fixed starting state x0 can be found by using a linear programming
approach.

In this contribution we specify the linear programming model from [4, 5] for the case of
the control problem with an arbitrary starting state. We show that the dual linear program-
ming model for the control problem with an arbitrary starting state allows us to determine
all optimal stationary strategies of the problem. Additionally, based on duality theory of lin-
ear programming and the results from [4, 5] we propose an efficient iterative algorithm for
determining the optimal stationary strategies of the problem.

2 The main results
In this contribution we present the following result for the stochastic control problem with an
arbitrary starting state x ∈ X.

Theorem 1 Let α∗x,y (x ∈ XC , y ∈ X), β∗x (x ∈ X) be a basic optimal solution of the
following linear programming problem:
Minimize

φ(α, β) =
∑

x∈XC

∑
y∈X(x)

cx,y αx,y +
∑

x∈XN

µxβx (1)

subject to 

∑
x∈X(y) αy,x − γ

∑
x∈X−

C (y) αx,y − γ
∑

x∈X−
N (y) px,y βx = 1, y ∈ XC ;

βy − γ
∑

x∈X−
C (y) αx,y − γ

∑
x∈X−

N (y) px,y βx = 1, y ∈ XN ;

βx ≥ 0, ∀x ∈ XN ; αx,y ≥ 0, ∀x ∈ XC , y ∈ X(x),

(2)

where

X−C (y) = {x ∈ XC | (x, y) ∈ E}, X−N (y) = {x ∈ XN | (x, y) ∈ E} for y ∈ X

and
µx =

∑
y∈X(x)

cx,ypx,y for x ∈ XN .



If in the graph G = (X,E) each vertex x ∈ X contains at least one leaving directed edge
then

∑
y∈X(x) α

∗
x,y > 0, ∀x ∈ XC and

α∗x,y∑
y∈X α∗x,y

∈ {0, 1}, ∀x ∈ XC , y ∈ X(x).

The optimal stationary strategy s∗ of the discounted stochastic control problem on the network
with an arbitrary starting state x ∈ X can be found by setting

s∗x,y =
α∗x,y∑

y∈X(x) αx,y
, ∀x ∈ XC , y ∈ X(x).

The proof of this theorem is similar to the proof of Theorem 1 from [4] for the case of the
problem with a fixed starting state x0.

Using duality theory for the linear programming problem (1),(2) we obtain the following
result.

Theorem 2 Let σ∗x (x ∈ X) be the optimal solution of the linear programming problem:
Maximize

ϕ(σ,w) =
∑
x∈X

σx (3)

subject to  σx − γσy ≤ cx,y, ∀x ∈ XC , y ∈ X(x);

σx − γ
∑

y∈X(x) px,yσy ≤ µx, ∀x ∈ XN .
(4)

Then σ∗x for x ∈ X represents the discounted expected total costs for the problem with the
corresponding starting states x ∈ X. An arbitrary optimal stationary strategy can be found by
fixing

s∗ : XC 7→ X

such that
(x, s∗(x)) ∈ E∗(x), ∀x ∈ XC

where
E∗(x) = {(x, y) | y ∈ X(x), σ∗x − γσ∗y − cx,y = 0}.

According to this theorem the linear programming problem (3), (4) determines all optimal
discounted costs σ∗x for x ∈ X and all optimal stationary strategies s∗ : XC 7→ X determined
by the set E∗(x). If XN = ∅ then we obtain the deterministic infinite horizon control problem
on a network with discounted costs. In the case when XN = ∅, γ = 1 and G is a directed graph
with nonnegative costs and has a sink vertex xs then we obtain the problem of determining
the minimum cost paths from every x ∈ X \ {x0} to sink vertex xs.

Using the duality theory of linear programming we can also propose the following iterative
algorithm for determining an optimal stationary strategy for the control problem.

Preliminary step (Step 0): Fix an arbitrary stationary strategy

s0 : xi → xj ∈ X(xi) for xi ∈ XC .

General step (Step k, k > 0): Determine the probability matrix P sk−1 = (psk−1
xi,xj

), where

psk−1

xi,xj
=


pxi,xj , if xi ∈ XN and (xi, xj) ∈ EN ;
1, if xi ∈ XC and xj = sk−1(xi);
0, if xi ∈ XC and xj 6= sk−1(xi).



Then calculate µxi,sk−1(xi) =
∑

y∈X(xi) p
sk−1(xi)
xi,y c

sk−1(xi)
xi,y for every xi ∈ X and solve the system

of linear equations

σxi = µxi,sk−1(xi) + γ
∑

xj∈X

psk−1(xi)
xi,xj

σxj , i = 1, 2, . . . , n

and determine the solution σk−1
x1 , σk−1

x2 , . . . , σk−1
xn

. After that calculate a new strategy

sk : xi → a ∈ A(xi) for xi ∈ XC ,

where
sk(xi) = arg min

a∈A(xi)

[
µxi,a + γ

∑
xj∈X

pa
xi,xj

σk−1
xi

]
, ∀xi ∈ XC .

Check if the following condition sk(xi) = sk−1(xi), ∀xi ∈ XC is valid. If this condition holds
then fix s∗ = sk; σ∗xi

= σk
xi
, ∀xi ∈ X as the optimal solution of the problem; otherwise go

to the next step k + 1.
The iterative algorithm described above can be regarded as a value iteration algorithm for a

discounted Markov decision problem with the transition probability matrix P s defined above.
In [5] it is shown that the infinite stochastic control problem on stochastic networks with
discounted costs is equivalent to a discounted Markov decision problem with a finite set of
states and finite set of actions. The proposed linear programming approach and the iterative
algorithms can be developed in a similar way for the discounted Markov decision problem.

3 Conclusion and perspectives
The considered infinite horizon discrete control problem on stochastic networks with discounted
costs generalizes the deterministic control problems on networks from [1, 3]. The optimal sta-
tionary strategies of this problem can be found on the bases of Theorems 1 and 2 by solving the
linear programming problem (1), (2) or the linear programming problem (3), (4). Additionally
an optimal stationary strategy for the discounted stochastic control problem on networks can be
found by using the proposed iterative algorithm. Therefore the linear programming approach
and the proposed iterative algorithm for solving the considered problem can be extended for
the infinite horizon discounted Markov decision processes with finite state and action spaces.
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