
A new algorithm for a class of Distance Geometry problems

Michael Souza1, Douglas S. Gonçalves2, Luiz M. Carvalho3, Carlile Lavor4, Leo Liberti5
1 Federal University of Ceara, Brazil

2 Federal University of Santa Catarina, Brazil
3 Rio de Janeiro State University, Brazil

4 University of Campinas, Brazil
5 LIX CNRS, École Polytechnique, Institut Polytechnique de Paris, France

Abstract

We propose a new algorithm for Discretizable Molecular Distance Geometry problems
(DMDGPs), a class of Distance Geometry problems (DGPs) whose search space can be
discretized and represented by a binary tree. By efficiently exploiting the many interesting
symmetry properties of DMDGP instances, the new algorithm solves a sequence of nested
and overlapped DMDGP subproblems rather than exploring the binary tree in a depth
first manner as the classic Branch-and-Prune (BP) algorithm. Computational results on
artificially generated instances show that the new algorithm outperforms the classic BP
algorithm in sparse DMDGPs.

Keywords : Distance Geometry, Discretization, Symmetry, Partial reflections

1 Introduction
The fundamental inverse problem in distance geometry is the one of finding positions from
interpoint distances. More formally, given a simple undirected graph G = (V, E), a weight
function d : E → R+ and an integer K > 0, the Distance Geometry Problem (DGP) aims to
find a realization x : V → RK such that

∀{u, v} ∈ E : ‖xu − xv‖ = duv, (1)

where ‖.‖ denotes the Euclidean norm, xu := x(u) and duv := d({u, v}). A map x : V → RK
satisfying (1) is called a valid realization [6]. Henceforth, we will consider that (1) admits a
solution.

It is well-known that DGP is NP-Hard [10] but, recently, efficient methods have been devel-
oped for particular classes of DGPs [1, 4]. An important class of DGPs that arises in protein
conformation problems (K = 3) is the one of Discretizable Molecular Distance Geometry
problems (DMDGP) [4].

Definition 1 We say that a DGP is a KDMDGP if there exists an order (v1, v2, . . . , vn) for
the vertices of G, where n = |V |, such that: 1) G[{v1, . . . , vK}] is a clique; 2a) for every i > K,
vi is adjacent to vi−1, vi−2, . . . , vi−K ; 2b) CM(vi−1, . . . , vi−K)2 > 0.

In Definition 1, G[.] denotes the induced subgraph and CM(vi−1, . . . , vi−K) is the Cayley-
Menger determinant (see [6, Sec. 2]) whose squared value is proportional to the (K−1)-volume
of a realization for vi−1, . . . , vi−K .

Although this definition considers an arbitrary dimension K, in this paper we focus on
protein conformations where K = 3 and denote a 3DMDGP simply by DMDGP. Sometimes
we present figures considering K = 2 for easier visualization.

Properties 1 and 2 allows one to turn the search space for realizations into a discrete one in
the following way. After fixing the positions of the first three vertices, for each new vertex vi,

with i > 3, property 2(a) ensures that the possible positions xi for vi lie in the intersection of
spheres centered at xi−1, xi−2, xi−3 with radii di,i−1, di,i−2, di,i−3, respectively. Then, property
2(b) guarantees that there are at most two points, let us say {x+

i , x−i }, in such intersection.
Thus, following the vertex order, this process leads to a binary tree of possible positions: each
path in this tree, from the root to a leaf node, corresponds to a possible realization for G.

However, notice that not all of these possible realizations (paths on the tree) are valid,
because Definition 1 does not involve all edges of G. We will call the edges in Definition 1
discretization edges and the others that may be available pruning edges. The last ones can
be used to validate partial realizations at certain levels of the search tree. Therefore, if we
explore the binary tree in a depth first manner and validate the possible positions as soon as
a pruning edge appears, then we arrive at the so called Branch-and-Prune (BP) algorithm [5].
It calls itself recursively in order to explore the search tree, pruning infeasible paths/branches
by checking whether pruning edges {h, i} are approximately satisfied: |‖xh − xi‖ − dhi| ≤ ε,
where ε > 0 is a prescribed tolerance.

Computational experiments in [4] showed that BP outperforms methods based on continuous
optimization [9] and semidefinite programming [3] on instances of the DMDGP subclass.

In the last decade, some works [7, 8] studied the symmetries of DMDGPs, proving interesting
results. For example, it is possible to count the number of solutions before solving the problem
[8]. Furthermore, once a solution is found, all others may be built from it by considering partial
reflections of that realization through its symmetry planes [7]. Naturally, other works (e.g.,
[2]) exploited such symmetry properties in order to solve the problem more efficiently.

However, none of these previous works completely exploited the symmetries for finding the
first solution of a DMDGP instance. Here we address this issue by considering the whole
problem as a sequence of nested subproblems, each one defined by a pruning edge {i, j}.

2 DMDGP symmetries and the new algorithm
Real life DMDGP instances, e.g., the ones from protein conformation problems, are often
composed by many nested or overlapped DMDGP subproblems [7]. Notice that each pruning
edge {i, j} defines a sub-instance G[vi, . . . , vj] which, thanks to Definition 1, is itself a DMDGP
instance.

Let us review some theoretical results from [7, 8] that are the base of our algorithm. Let X
denote the set of all incongruent solutions of a DMDGP and x ∈ X a particular realization.
Given x ∈ X, for i > 3, let Ri

x(y) be the reflection of y ∈ R3 through the plane containing
xi−1, xi−2, xi−3 with normal pi. Let us also partition E = ED ∪ EP where ED is the set of
discretization edges and EP the set of pruning edges and, for all i > 3, define partial reflection
operators gi(x) = (x1, x2, . . . , xi−1, Ri

x(xi), Ri
x(xi+1), . . . , Ri

x(xn)).

Proposition 1 Let (G, d, K) be a feasible DMDGP instance with vertex order (v1, . . . , vn).
With probability 1, for all j > 3 and i < j−3, the DMDGP subproblem defined by edge {vi, vj}
has two solutions.

In Proposition 1, “with probability 1” means that the set of DMDGP instances for which the
statements do not hold has Lebesgue measure zero in the set of all DMDGP instances [8]. The
proof of Proposition 1 follows from a result in [7, Thm. 3.2]. Figure 1 illustrates the analogous
of Proposition 1 for dimension K = 2.

The two solutions of subproblem {i, j} are reflections of each other through the plane de-
fined by xi, xi+1, xi+2. Hence, once a subproblem is solved, if it is part of a larger DMDGP
subproblem, it can be handled as a rigid body, meaning that we only need to store its first
symmetry plane in order to compose with other partial reflections of the larger subproblem.

Another useful result for solving a DMDGP subproblem is the following.

Proposition 2 Let xi, xk be such that k > i+3 and y ∈ R3 such that y is not in the hyperplanes
containing the origin and normal to pi, pk. Then Ri

x(Rk
x(y)) = Rk

gi(x)R
i
x(y).

a
d = R4

x′(c) = R3
x(a)

b = R4
x(a) c = R3

x(b) = R3
x(R4

x(a))

FIG. 1: The leftmost path/realization x is represented by a straight line whereas the rightmost x′ by
a dashed line. All 4 possible positions for the fourth vertex (denoted by a, b, c and d) can be generated
by x and its induced reflections R3

x and R4
x. Illustration for K = 2. The concentric arcs centered at

vertex 1 position have radii equal to the distance between vertex 1 and vertices 3 and 4.

Algorithm 1 SBP
1: SBP(n, G(V, E), d)
2: for each {i, j} ∈ EP do
3: if c(i) 6= c(j) then
4: Initialize candidate positions xk for k = i, . . . , j

5: Merge the clusters covered from i to j and update c

6: Retrieve the Pij necessary symmetry planes and the corresponding reflectors
7: for each g of the 2Pij partial reflection compositions do
8: if ‖g(xj)− xi‖ = dij then
9: Go to Step 12
10: end if
11: end for
12: Apply the reflections composing g to all candidate positions from j − 1 to i + 3.
13: end if
14: end for

Due to Propositions 1 and 2, we stress that in order to solve a DMDGP subproblem, we do
not need to recompute all the positions every time a path ends up in a infeasible leaf node. As
soon as we obtain a realization, valid or not (e.g., taking the leftmost path in the sub-tree), we
can build all necessary symmetry planes and their corresponding reflection operators. Then,
we can apply compositions of such partial reflections only to the last vertex in the sub-structure
until we find its correct position, as illustrated in Figure 1 for the 2D case. Only after we find
the correct composition for the last vertex, we apply it to all vertices in the subproblem to
retrieve their position.

Since each pruning edge {i, j}, defines a DMDGP subproblem, we propose to handle the
pruning edges, one at a time, following a specific order: they are sorted in increasing order of
j, followed by a decreasing order of i. Such pruning edge order allows us to compute candidate
vertex positions in the natural order 1, 2, . . . , j, when tackling edge {i, j}, which avoids the
work of global alignment because all subproblems are solved in the same referential.

After the inner-most subproblems are solved, their structures/realizations can be merged in
realizations of larger subproblems containing them and be treated as rigid bodies. In order to
control which subproblems are already solved, we merge subproblems {u, v} with {i, j} when
either {u, v} is already solved and i < u < v < j, or u < i < v < j and v − i > 3, giving rise
to a “cluster” of the corresponding vertices. The information of which cluster each vertex i
belongs is store in the variable c(i). Initially, c(i) = i,∀vi ∈ V .

Algorithm 1 summarizes the above ideas.

BP SBP
ID |V | |E| time (s) MDE time (s) MDE Speed-up
1ADX 120 659 3.33E-04 6.41E-07 5.01E-05 2.53E-12 6.65E+00
1BDO 241 1345 3.22E-04 2.62E-08 8.49E-05 1.04E-11 3.79E+00
1ALL 480 3443 9.43E-04 3.91E-07 2.02E-04 1.27E-12 4.67E+00
1FHL 1002 6378 7.30E-03 4.02E-13 4.67E-04 1.17E-11 1.56E+01
6RN2 2052 13710 1.83E-02 6.02E-14 8.25E-04 9.35E-12 2.22E+01
1EPW 3861 23191 3.19E-01 4.21E-09 2.63E-03 9.78E-11 1.21E+02

TAB. 1: Computational results in some protein-like instances (cut-off: 5Å).

3 Computational results
We generate a set of protein-like instances whose data were extracted from the Protein Data
Bank (PDB)1, and compare the results with those of the classic BP [5, 4]. We consider only the
protein backbone composed by the sequence of atoms N−Cα−C and add an edge either when
the atoms are separated by at most three covalent bonds or the distance between atom pairs
is smaller than 5 Å. The natural backbone order for instances generated in this way provides
a vertex order satisfying the assumptions of Definition 1.

In Table 1, we present the results obtained by BP: the classic BP implementing a depth-
first search [4, 5], where no symmetry is exploited at all and coordinates for the vertices are
re-computed every time a backtracking occurs; and Algorithm 1, called SBP. The table shows
the number of atoms |V |, number of edges (available distances) |E|, CPU time in seconds for
the two algorithms and the normalized Mean Distance Deviation (MDE) [6]. Both algorithms
were stopped as soon as the first solution is found.

From the numerical results we observe that the new algorithm may provide considerable
speed-up with respect to the classic BP algorithm. It also seems that the CPU time for SBP
varies linearly with the number of edges, but additional experiments and theoretical studies
are necessary to support this claim.

References
[1] Q. Dong and Z. Wu. A linear-time algorithm for solving the molecular distance geometry problem with

exact inter-atomic distances. Journal of Global Optimization, 22:365–375, 2002.

[2] F. Fidalgo, D. S. Gonçalves, C. Lavor, L. Liberti, and A. Mucherino. A symmetry-based splitting strategy
for discretizable distance geometry problems. Journal of Global Optimization, 71:717–733, 2018.

[3] N. Krislock and H. Wolkowicz. Explicit sensor network localization using semidefinite representations
and facial reductions. SIAM Journal on Optimization, 20:2679–2708, 2010.

[4] C. Lavor, L. Liberti, N. Maculan, and A. Mucherino. The discretizable molecular distance geometry
problem. Computational Optimization and Applications, 52:115–146, 2012.

[5] L. Liberti, C. Lavor, and N. Maculan. A branch-and-prune algorithm for the molecular distance geometry
problem. International Transactions in Operational Research, 15:1–17, 2008.

[6] L. Liberti, C. Lavor, N. Maculan, and A. Mucherino. Euclidean distance geometry and applications.
SIAM Review, 56:3–69, 2014.

[7] L. Liberti, C. Lavor, and A. Mucherino. The Discretizable Molecular Distance Geometry Problem seems
easier on proteins. In Antonio Mucherino, Carlile Lavor, Leo Liberti, and Nelson Maculan, editors,
Distance Geometry, pages 47–60. Springer New York, 2013.

[8] L. Liberti, B. Masson, J. Lee, C. Lavor, and A. Mucherino. On the number of realizations of certain
Henneberg graphs arising in protein conformation. Discrete Applied Mathematics, 165:213–232, 2014.

[9] J. J. Moré and Z. Wu. Distance geometry optimization for protein structures. Journal of Global Opti-
mization, 15:219–234, 1999.

[10] J. B. Saxe. Embeddability of weighted graphs in k-space is strongly NP-hard. In Proceedings of 17th

Allerton Conference in Communications, Control and Computing, pages 480–489, Monticello, IL, 1979.

1https://www.rcsb.org/

