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Abstract

The range-relaxed graceful game is played in a simple graph G, by two players, Alice
and Bob, who alternately assign a previously unused label f(v) ∈ L = {0, . . . , k}, k ≥
|E(G)|, to a previously unlabeled vertex v ∈ V (G). If both ends of an edge vw ∈ E(G)
are already labeled, then the label of the edge is defined as |f(v)− f(w)|. Alice’s goal is
to end up with a vertex labelling of whole G where all of its edges have distinct labels and
Bob’s goal is to prevent it from happening. When k = |E(G)| the game is called graceful
game. Both games were proposed by Z. Tuza in 2017. In this work, we investigate the
graceful game for some cartesian products of graphs and corona products of graphs and
determine that Bob has a winning strategy in all investigated families independently of
who starts the game. Additionally, we also investigate the range-relaxed graceful game
and prove that Alice wins the range-relaxed graceful game on any simple graph G with
order n for any set L = {0, 1, . . . , k} with |L| ≥ ∆(G)

(
n−1

2
)

+ (∆(G)2 + 1)n−∆(G)2.
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1 Introduction
Graph labelling is an area of graph theory whose main concern consists in determining the
feasibility of assigning labels to the elements of a graph satisfying certain conditions. In the
last decades, many optimization problems have been posed where it is required to label the
vertices or the edges of a given graph with numbers. Most of these problems [7–9] emerged
naturally from modeling of optimization problems on networks and one of the most investigated
is the problem of determining the gracefulness of a graph, proposed by S. Golomb [7] in 1972.

Formally, given a graph G = (V (G), E(G)) and a set L ⊂ Z, a labeling of G is a vertex
labeling f : V (G)→ L that induces an edge labeling g : E(G)→ Z in the following way: g(uv)
is a function of f(u) and f(v), for all uv ∈ E(G), and g respects some specified restrictions.

Given a graph G and the set of consecutive integer labels L = {0, . . . , k}, k ≥ |E(G)|, a
labelling f : V (G) → L is graceful if: (i) k = |E(G)|; (ii) f is injective; and (iii) if each edge
uv ∈ E(G) is assigned the (induced) label g(uv) = |f(u) − f(v)|, then all induced edge labels
are distinct. When condition (i) in the above definition is relaxed so as to allow k > |E(G)|, f
is said to be a range-relaxed graceful labeling (RRG labeling). The least k needed for G to have
a labelling f satisfying conditions (ii) and (iii) in the above definition is called the gracefulness
of G and is denoted by grac(G). It is known that the parameter grac(G) is defined for every
simple graph G [7]. However, grac(G) is not yet determined even for classic families of graphs
such as complete graphs [12]. Graceful labelings were introduced by A. Rosa [14] in 1996
and were later so named by S. Golomb [7] who also introduced the range-relaxed variation.
Range-relaxed graceful labelings were later investigated by other authors [1, 2].
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From the literature of Graph Labeling [6], it is notorious that labeling problems are usually
studied from the perspective of determining whether a given graph has a required labeling. An
alternative perspective is to analyze labeling problems from the point of view of combinatorial
games. In most combinatorial games, two players — traditionally called Alice and Bob —
alternately select and label vertices or edges (typically one vertex or edge in each step) in a
graph G which is completely known for both players. In 2017, Z. Tuza [15] surveyed the area of
labeling games and posed new labeling games such as the edge-difference distinguishing game,
which, in this work, we call range-relaxed graceful game and he also proposed the graceful
game. The graceful game was later studied by Frickes et al. [4], that investigated winning
strategies for Alice and Bob in some classic families of graphs such as: complete graphs, paths,
cycles, wheels, complete bipartite graphs, caterpillars, prisms, and hypercubes.

In this work, we examine the graceful game and study winning strategies for Alice and Bob
in some classes of products of graphs, such as: sunlet graphs, grids, generalized book graphs,
toroidal grids and the cartesian product of complete graphs and paths. We also investigate
the classes of circular snake graphs and crown graphs. Cartesian products of graphs have an
interesting behavior since there are cases where Alice has a winning strategy for graphs G1 and
G2, but she looses on the cartesian product G1�G2. For example, Alice wins the graceful game
on C3 and on K1 [4], but she looses on the product C3�K1. Another example is Kp�Pq, where
Alice wins on K3 and P2 [4], but she looses on K3�P2. Additionally, we also study the range-
relaxed graceful game and present a lower bound on the number of consecutive nonnegative
integer labels necessary for Alice to win the range-relaxed graceful game on a simple graph G.

This extended abstract is organized as follows: Section 2 presents auxiliary results and
definitions; and Sections 3 and 4 present our results on the graceful game and range-relaxed
graceful game.

2 Basic notation and auxiliary lemmas
Before presenting our results, some definitions are needed. The cartesian product G1�G2 of
two graphs G1 and G2 is a the graph with vertex set V (G1�G2) = V (G1) × V (G2) such
that (u1, v1)(u2, v2) ∈ E(G1�G2) if and only if either (1) u1u2 ∈ E(G1) and v1 = v2, or (2)
v1v2 ∈ E(G2) and u1 = u2. Another product of graphs is the corona of two graphs, introduced
by Frucht and Harary in 1970 [13]. Formally, given a graph G with p vertices and a graph H,
the corona of G and H, denoted by G �H, is the graph obtained from G and p copies of H
by joining each vertex of G to every vertex of its respective copy of H.

In 2017, Z. Tuza [15] proposed the following maker-breaker game inspired on RRG labelings:
given a simple graph G, Alice and Bob alternately assign a previously unused label f(v) ∈
L = {0, . . . , k}, k ∈ N, to a previously unlabeled vertex v ∈ V (G). Alice starts the game. If
both ends of an edge vw ∈ E(G) are already labeled, then the label of the edge is defined as
g(vw) = |f(v)− f(w)|. We say that a move is legal if, after it, all edge labels are distinct. The
game ends if there is no legal move possible or an RRG labeling is created. Alice wins if an
RRG labeling of G is created, otherwise Bob wins. Tuza called such a game edge-difference
distinguishing. However, we call it a range-relaxed graceful game in order to match with the
range-relaxed graceful labeling nomenclature previously used in the literature. Note that, for
the case where |L| = |E(G)| + 1, Alice’s goal is to end up with a graceful labeling of G. In
such a case the game is called graceful game.

Next, we state two auxiliary lemmas that are used in our proofs related to the graceful game
on some products of graphs.

Lemma 1 (Frickes et al. [4]) Let G be a simple graph. In any step of the graceful game,
Alice can only use the label 0 (resp. m) to label a vertex v ∈ V (G) if v is adjacent to every
remaining vertex not yet labeled or v is adjacent to a vertex already labeled by Bob with m
(resp. 0). �



Lemma 2 (Frickes et al. [4]) Let G be a simple graph. If Bob assigns 0 (resp. m) to a
vertex v ∈ V (G), where v has two non-adjacent vertices or only one adjacent vertex, then Alice
is forced to label a vertex adjacent to v with m (resp. 0). �

3 Results on the graceful game
In this section, we state our results on the graceful game of some classes of products of graphs.
The n-sunlet graph, or simply sunlet graph, is the corona of a cycle Cn, n ≥ 3, with complete
graph K1, denoted Cn �K1. R. Frutch [5] proved that all sunlet graphs are graceful. In this
work, we characterize the graceful game for all sunlet graphs.

Theorem 3 Bob has a winning strategy for every sunlet graph Cn �K1, n ≥ 3.

Sketch of the proof : Consider G ∼= Cn � K1, n ≥ 3. First, consider that Bob starts
the game by assigning label 0 to a pendant vertex u ∈ V (G). This forces Alice to assign m
to the unique neighbour of u (Lemma 2). Next, Bob assigns 1 to another pendant vertex of
G, thus exhausting Alice’s possibilities of generating the edge label m − 1. Therefore, Bob
wins the game. Now, consider that Alice starts the game. First, consider that she labels a
pendant vertex u with label a ∈ {1, . . . , m − 1} (Lemma 1). Then, Bob assigns 0 to another
pendant vertex v. In the next move, Alice is forced to assign label m to a vertex w ∈ N(v).
If a = 1, then it is not possible to create the edge label m− 1 anymore. However, if a 6= 1, in
the next move, Bob assigns label 1 to an unlabeled pendant vertex of G (such a vertex exists
since n ≥ 3), cancelling Alice’s possibilities of creating edge label m − 1. In both cases, Bob
wins the game. In order to conclude the proof, it remains to analyze the case where Alice
starts the game playing on a vertex u ∈ V (G) with degree three. Such a case can be solved
similarly to the previous one, by considering separately the cases where she assigns to u a label
a ∈ {2, . . . , m− 1} or a = 1. In any of these cases, Bob wins the graceful game. �

A grid is a simple graph, Pr�Ps, obtained from the cartesian product of two path graphs
Pr and Ps, with r, s ∈ N and r, s ≥ 2. D. S. Jungreis and M. Reid [10] proved that all grids
are graceful. Theorem 4 states that Bob wins the graceful game on all grids.

Theorem 4 Bob has a winning strategy for every grid graph Pr�Ps, for r, s ≥ 2. �

The generalized book, Bq,r, is the graph obtained from the cartesian product of a path Pq

with a star Sr, where q is the number of vertices of the path and r is the number of edges of
the star. Some results on the gracefulness of generalized books are known [3, 11]. Theorem 5
characterizes the graceful game for all generalized book graphs.

Theorem 5 Bob wins the graceful game on all generalized books Bq,r, for q ≥ 2 and r ≥ 1. �

The toroidal grid graph Tp,q, with p, q ∈ N and p, q ≥ 3, is defined as the cartesian product
Cp�Cq of two cycles Cp and Cq. D. S. Jungreis and M. Reid [10] proved that the toroidal grids
Tp,q with p ≡ 0 (mod 4) and q ≡ 0 (mod 2) are graceful. Additionally, they also showed that
all toroidal grids Tp,q with p and q odd are not graceful. The (un)gracefulness of the remaining
toroidal grids is still unkown. Theorem 6 characterizes the graceful game for all toroidal grids.

Theorem 6 Bob has a winning strategy for all toroidal grids. �

Another class investigated in this work is the cartesian product of a path Pr and a complete
graph Ks, for integers r, s ≥ 2. Although the (un)gracefulness of graphs Kp�Pq is largely not
settled, the graceful game on this family is characterized as follows.

Theorem 7 Bob has a winning strategy for every graph Kp�Pq, for p, q ≥ 2. �



In this work, the graceful game was also investigated for two other classes of graphs that
are not obtained by graph products: the crown graphs and the (k, n)-circular snakes. A crown
graph, denoted by R2p, is the bipartite graph on 2p vertices, p ≥ 3, obtained from a complete
bipartite graph Kp,p by deleting from Kp,p the edges of a perfect matching. A (k, n)-circular
snake, or kCn-snake, is a connected simple graph with k blocks whose block-cutpoint graph is
a path and each of the k blocks is isomorphic to a cycle on n vertices. In this work, it is also
shown that Bob wins the graceful game on all members of these families of graphs.

Theorem 8 Bob wins the graceful game on all crown graphs. �

Theorem 9 Bob wins the graceful game on all kCn-snakes, for k ≥ 2 and n ≥ 3. �

4 Results on the range-relaxed graceful game
In his seminal paper, Z. Tuza [15] asked the following question regarding the range-relaxed
graceful game: given a simple graph G and a set of consecutive nonnegative integer labels
L = {0, . . . , k}, for which values of k can Alice win the range-relaxed graceful game?

The next two results partially answer Tuza’s question by presenting a lower bound for the
value of k, for any simple graph and also specifically for trees.

Theorem 10 Let G be a simple graph on n vertices. Alice wins the range-relaxed graceful
game on G for any set L = {0, 1, . . . , k} with |L| ≥ ∆(G)

(n−1
2

)
+ (∆(G)2 + 1)n−∆(G)2. �

Theorem 11 Let T be a tree of order n and maximum degree ∆. Alice wins the range-relaxed
graceful game on T for any set L = {0, 1, . . . , k} with |L| ≥ (∆2 + ∆ + 1)n−∆2 − 2∆. �
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