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Abstract

We introduce the monochromatic transversal game where the players, Alice and Bob,
alternately colours vertices of a hypergraph. Alice, who colours the vertices with red,
wins the game if she obtains a red transversal; and Bob wins if he does not let it happen,
i.e. there exists a monochromatic blue hyperedge. Both players are enabled to start the
game and they play optimally. We analyze the game played on clique-hypergraphs of
complete graphs, paths and powers of cycles. For each of these graphs we show a strategy
that allows one of the players to win the game.
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1 Introduction
The clique-hypergraph H(G) of an undirected simple graph G = (V, E) is a pair H = (V, E)

where V is the vertex set of G and where the hyperedge set E is the set of all maximal cliques
in G, that is, E is the set of all maximal subsets of V whose vertices induce a complete graph.
Clique-hypergraphs were first introduced by Duffus, Sands, Sauer, and Woodrow in the open-
problem section of [5] where the authors asked what is the smallest number of colours needed
to colour the vertices of H(G) such that no pair of adjacent vertices of H(G) is monochromatic.
Campos, Dantas, and Mello [4] answered their question in the case of clique-hypergraphs of
powers of cycles. They showed that, for powers of cycles, this number is equal to 2, except for
odd cycles of size at least 5 where the answer is 3. Bacsó, Gravier, Gyárfás, Preissmann and
Sebő [1] proved that this number is 3 for almost all perfect graphs, and Gravier, Hoàng and
Maffray [6] studied this subject for graphs with no long path.

A transversal in a hypergraph H is a subset of vertices in V that has a nonempty intersection
with every hyperedge of H. This concept has been used in many problems of graph theory and
some of them are related to combinatorial games played on hypergraphs. As an example we
refer to the transversal game introduced by Bujtás, Henning and Tuza [2, 3]. The transversal
game played on H involves of two players, Edge-hitter and Staller, who take turns choosing a
vertex from H. Each chosen vertex must hit at least one edge not hit by the vertices previously
chosen. The game ends when the set of chosen vertices becomes a transversal inH. Edge-hitter
wishes to minimize the number of chosen vertices, while Staller wishes to maximize it.
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In this work, we consider what we call the monochromatic transversal game. In this avoider-
enforcer game, two players alternately colour the vertices of a hypergraph H. Player 1, who
we call Alice, tries to obtain a monochromatic transversal in graph. If she does then she wins
the game. Thus, player 2, who we call Bob, tries prevent it from happening, that is, Bob
tries to obtain a monochromatic blue hyperedge. The monochromatic transversal game has
the following property which we remark below:

Remark 1 If there exists a strategy that allows Alice (resp. Bob) to win when Bob (resp.
Alice) starts the game, then there exists a strategy that allows Alice (resp. Bob) to win when
she (resp. he) starts the game.

We consider the game played on clique-hypergraphs of complete graphs, paths and powers
of cycles, showing for each graph, which plays has advantage in the game. Namely, in each
graph G we show that there exists a strategy that allows some player to win the game played
on that clique-hypergraph H(G). We label the vertices of V as {v0, . . . , vn−1} where for any
i < j vertices vi, vj of G are adjacent (in G) if:

• G = Kn is the complete graph on n vertices;

• G = Pn is a path of length n and j = i + 1;

• G = Ck
n is the k-th power of a cycle of length n and j = i± ` (mod n), ` ≤ k.

The paper is organized as follows: in Section 2 we illustrate the simplest and basic strategies
that can be used in the game, where we consider the game being played on the complete
graph on n vertices (where Alice always has advantage), on the cycles of length n (where Bob
has advantage if ≥ 4) and on on the paths of length n (where Bob has advantage if ≥ 6). In
Section 3 we write a complete analysis of the game played on second powers of cycles. We show
that there exists a strategy that allows Alice to win the game played on H(C2

n), independently
of who starts the game, except if n = 6. Last, we use algebraic arguments to extend the results
of Section 3 for larger powers of cycles.

2 Warming up with clique-hypergraphs of complete graphs,
cycles and paths

In order to illustrate the game and its simplest results we start playing it on clique-hypergraphs
of complete graphs, cycles and paths. We start with the clique-hypergraph of the complete
graph on n vertices Kn.

Proposition 1 If Kn is a complete graph with n ≥ 2, then there exists a strategy that allows
Alice to win the game played in the clique-hypergraph H(Kn).

Proof : The clique-hypergraph H(Kn) of the complete graph on n vertices contains a unique
hyperedge with n vertices. Therefore, by Remark 1, independent of who starts the game, Alice
always wins since she obtains a red transversal in her first turn. �

Now we analyze the game played on the clique-hypergraph of a cycle. Since C3 is isomorphic
to K3 (whose result is contained in Proposition 1), now we consider n ≥ 4.

Theorem 1 Let n ≥ 4. Let Cn denote a cycle of length n. There exists a strategy that allows
Bob to win the game on the clique-hypergraph H(Cn), independently of who starts playing the
game.

Proof : By Remark 1 we may assume that Alice starts the game. Let vj denote the vertex
that is coloured red in Alice’s first turn. If Bob colours blue a vertex vk that is not adjacent
to vj then, independently of which vertex Alice colours red in her next move, there will be an



uncoloured vertex v`, ` ∈ {k− 1 (mod n) , k + 1 (mod n)}, that is adjacent to vk in Bob’s next
turn. Colouring v` with blue, Bob obtains his monochromatic blue hyperedge {vk, vl} and wins
the game. �

We finish this section with the analysis of the game on clique-hypergraphs of paths. More-
over, since P2 is isomorphic to K2 (whose result is contained in Proposition 1), now we consider
n ≥ 3. First observe that there exists a strategy that allows who started playing to win the
game whenever the considered graph is the clique-hypergraph H(Pn) for 3 ≤ n ≤ 5. Indeed,
that player must only start colouring vertex vdn

2 e and at its second turn: colour vdn
2 e−1 or

vdn
2 e+1 if it is Bob; colour a vertex that is adjacent to Bob’s last coloured vertex if it is Alice.

In the case of H(Pn) n ≥ 6, an argument analogous to the proof of Theorem 1 shows that
there exists a strategy that allows Bob to win the game, independently of who starts playing
the game.

3 Analysis of the game on the clique-hypergraph of C2
n

Observe that whenever n ≤ 5, graphs C2
n are isomorphic to the complete graphs on n vertices

Kn whose clique-hypergraphs have been analyzed in Proposition 1. Along this section we deal
with the remaining second powers of cycles C2

n, n ≥ 6. In [4] the maximal cliques in clique-
hypergraphs powers of cycles are classified into two types: an external clique, whose vertex set
is composed by k + 1 vertices with consecutive indices vx, . . . , vx+k (mod n) for some x ∈ Zn,
and an internal clique, whose vertex set contains vertices with non-consecutive indices. In this
analysis it becomes necessary to know whether it contains or not internal hyperedges. It can
be quickly verified that hypergraphs H(C2

n) with n > 6 (whose hyperedges are cliques of size
3) do not contain these internal cliques. We start with the analysis of these graphs.

Theorem 2 Let n > 6. There exists a strategy that allows Alice to win the game played in
the clique-hypergraph H(C2

n), independently of who starts playing the game.

Proof : Recall that all hyperedges of H(C2
n), n > 6, are external. In order to obtain his

monochromatic hyperedge, Bob must colour blue 3 consecutive vertices. Therefore, Alice wins
the game playing according to the following rules which are stated in decreasing importance
(she only follows rule (j) if its not possible to follow any rule (i) for i < j): (1) she colours vertex
vk−1 whenever there are two blue vertices vk (mod n) and vk+1 (mod n); (2) she colours vertex vk

whenever there are two blue vertices vk−1 (mod n) and vk+1 (mod n); (3) if Bob coloured vertex
vk (mod n) then Alice colours vertex vk+1 (mod n); (4) if Bob coloured vertex vk (mod n) then
Alice colours vertex vk−1 (mod n). �

Now we deal with H(C2
6 ) which is the unique clique-hypergraph of a second power of a cycle

that contains internal cliques.

Proposition 2 There exists a strategy that allows Bob to win the game played in the clique-
hypergraph H(C2

6 ), independently of who starts playing the game.

Proof : Firstly, observe that H(C2
6 ) contains the following hyperedges: e1 = {v0, v2, v4},

e2 = {v1, v3, v5} , e3 = {v5, v0, v1}, e4 = {v2, v3, v4}, e5 = {v4, v5, v0}, e6 = {v1, v2, v3},
e7 = {v0, v1, v2} e e8 = {v3, v4, v5}, where e1 and e2 are the unique internal maximal cliques.

By Remark 1, we may assume that Alice starts playing the game. Moreover, without loss
of generality, let us assume that she colours the vertex v0 with the colour red at her first turn.
Since v0 is adjacent to every vertex in V (C2

n) except v3, it makes v3 be the vertex whose
adjacent hyperedges have no red vertex. Therefore, Bob’s best option is to colour v3 blue.

By the symmetry of C2
n Alice has two options for her second turn: she can colour v1 (or v5)

or v2 (or v4). If she colours v1 (resp. v5) red then she intersects all hyperedges except e4 and
e8 (resp. e4 and e6). Thus, Bob will colour vertex v4 making her choose one of the vertices v2
and v5 (resp. v1 and v4). Therefore, she intersects only one of the hyperedges e4 and e8 (resp.



e4 and e6). Analogously, if Alice colours v2 (resp. v4) red at her second turn, Bob will colour
vertex v5 (resp. v1) making her colour one of the vertices v1 and v4 (resp. v2 and v5), which
forbids her to intersect both hyperedges e2 and e8 (resp. e2 and e6). �

4 Extending our results to clique-hypergraphs of Ck
n

In this section we use Theorem 2, which concerns the game played on H(C2
n), to extend

its validity when the game is played on H(Ck
n) for k ≥ 3. Similarly to H(C2

n), we note that
whenever k ≥ bn

2 c, graphs Ck
n are isomorphic to the complete graphs on n vertices Kn whose

clique-hypergraphs have been analyzed in Proposition 1. Firstly, observe that if Bob can not
colour a clique of size k′ while playing the game on a clique-hypergraph H(G), then he can not
colour a clique of size k for k > k′. By this observation we obtain the following result:

Lemma 1 Let n > 6 and 2 ≤ k′ < k. If there exists a strategy that allows Alice to win the
game in H(Ck′

n ), and H(Ck
n) does not have any internal hyperedge, then there exists a strategy

that allows Alice to win the game in H(Ck
n).

FIG. 1: Graphs C2
6 (internal maximal cliques in red and blue), and C2

7 (no internal maximal cliques).

The above lemma allows us to know that Alice has advantage in the game played on clique-
hypergraphs of powers of cycles whenever this hypergraphs do not present internal hyperedges.
We depict two examples in Figure 1. By Theorem 2 and Lemma 1 we conclude our main result.

Theorem 3 Let n > 6. If H(Ck
n) has no internal hyperedge then there exists a strategy that

allows Alice to win the game played in H(Ck
n).
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