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Abstract

We consider the problem of fairly allocating indivisible items to several agents, each
of them having different profit valuations of items. An additional condition allows an
incompatibility relation between pairs of items represented by a conflict graph. Hence,
every feasible allocation of items to the agents corresponds to a partial coloring, that is,
a collection of pairwise disjoint independent sets. The sum of profits of vertices/items
assigned to one color/agent should be optimized in a maxi-min sense.

The problem is studied for different classes of conflict graphs. On the one hand we
show strong NP-hardness for bipartite graphs and their line graphs, on the other hand we
derive pseudo-polynomial solution algorithms for cocomparability graphs and biconvex
bipartite graphs.
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1 Introduction
The fair allocation of resources to multiple agents is a classical problem in combinatorial
optimization. In this work we study the fair allocation of n indivisible goods or items to a set
of k agents. Each agent has its own additive utility function over the set of items. The goal is
to assign every item to exactly one of the agents such that the minimal utility over all agents
is as large as possible. A similar problem is well-known as the Santa Claus problem (see [2]),
where gifts have to be distributed to kids. It can be also seen as weight partitioning as well as
a scheduling problem.

In this contribution we add a conflict graph G to the problem. The vertices of the graph
correspond to items and an edge between two vertices expresses an incompatibility relation
between the two corresponding items, meaning that they may not be allocated to the same
agent. This can reflect the fact that items rule out their joint usage or simply the fact that
certain items are identical (or from a similar type) and it does not make sense for one agent
to receive more than one of these items. Similar conflict graphs were considered for a wide
variety of combinatorial optimization problems, e.g., knapsack problem ([11, 12]), bin packing
([9]), scheduling (e.g., [8]) and problems on graphs (e.g., [6]).

Clearly, every feasible allocation to one agent must be an independent set in the conflict
graph. Therefore, the solution can also be expressed as a partial k-coloring of the conflict
graph G, but in addition every vertex/item has a profit value for every color/agent and the
sum of profits of vertices/items assigned to one color/agent should be optimized in a maxi-min
sense.



This problem combines aspects of independent sets, graph coloring, and weight partition-
ing in an interesting way and offers new perspectives to look at these classical combinatorial
optimization problems.

Formally, we consider a set V of items with cardinality |V | = n and k profit functions
p1, . . . , pk : V → Z+. The satisfaction level of an ordered k-partition (X1, . . . , Xk) of V (with
respect to p1, . . . , pk) is defined as the minimum of the resulting profits pj(Xj) :=

∑
v∈Xj

pj(v),
where j ∈ {1, . . . , k}. The classical fair division problem can be stated as follows.

Fair k-Division of Indivisible Goods
Input: A set V of n items, k profit functions p1, . . . , pk : V → Z+.
Task: Compute an ordered k-partition of V with maximum satisfaction level.

For the special case, where all k profit functions are identical, the problem can also be
represented in a scheduling setting. There are k identical machines and n jobs, which have
to be assigned to the machines by a k-partitioning. The goal is to maximize the minimal
completion time (corresponding to the satisfaction level) over all k machines (see [7]). It
follows easily from this connection that Fair k-Division of Indivisible Goods is weakly
NP-hard for any constant k ≥ 2 and strongly NP-hard for k being part of the input, even with
k identical profit functions.

The first elaborate treatment of Fair k-Division of Indivisible Goods was given in [4],
where two approximation algorithms with bounded (but not constant) approximation ratio
were given and it was shown that the problem cannot be approximated by a factor better
than 1/2. In 2006 Bansal and Sviridenko [2] coined the term Santa Claus problem for the case
when k is not fixed but part of the input. Since then a huge number of approximation results
have appeared on this problem of allocating indivisible goods exploring different concepts of
objective functions and various approximation measures.

A different specialization is assumed in the widely studied Restricted Max-Min Fair Alloca-
tion problem. This is a special case of Fair k-Division of Indivisible Goods where every
item vi ∈ V has a fixed valuation p(vi) and every agent either likes or ignores item vi, i.e., the
profit function pj(vi) ∈ {0, p(vi)} (see [1] for a recent overview).

In this contribution we add to the problem a conflict graph G = (V, E), where an edge
{i, j} ∈ E means that items i and j should not be assigned to the same subset of the partition.
Based on the conflict graph we can define a partial k-coloring of a graph G as a sequence
(X1, . . . , Xk) of pairwise disjoint independent sets in G (cf. Berge [3]).

Combining the given profit structure with the notion of coloring the vertices of a graph
we define for the k profit functions p1, . . . , pk : V → Z+ and for each partial k-coloring
c = (X1, . . . , Xk) a k-tuple (p1(X1), . . . , pk(Xk)), called the profit profile of c. The minimum
profit of a profile, i.e., mink

j=1{pj(Xj)}, is the satisfaction level of c and finally implies the
definition of our problem:

Fair k-Division Under Conflicts
Input: A graph G = (V, E), k profit functions p1, . . . , pk : V → Z+.
Task: Compute a partial k-coloring of G with maximum satisfaction level.

Note that for k = 1, the problem coincides with the strongly NP-hard weighted independent
set problem, while the original problem Fair k-Division of Indivisible Goods (arising for
an edgeless conflict graph G) is trivial for k = 1 and only weakly NP-hard for k ≥ 2. Thus,
the addition of the conflict structure gives rise to a much more difficult problem.

In this contribution we aim at narrowing the gap between tractable cases of Fair k-Division
Under Conflicts where the conflict graph permits a pseudo-polynomial solution algorithm,
and strongly NP-hard cases. Further results on these aspects will be presented in a future
publication currently under preparation.



2 Hardness results for bipartite graphs and their line graphs
Since Fair k-Division Under Conflicts is a generalization of the Independent Set
problem it is interesting to consider graph classes where the latter is still polynomially solvable
and investigate whether the former remains strongly NP-hard or not. We start with bipartite
graphs and show:

Theorem 1 For each integer k ≥ 2, the decision version of Fair k-Division Under Con-
flicts is strongly NP-complete in the class of bipartite graphs.

The fairly complicated proof works by a reduction from the Clique problem. In fact, it shows
strong NP-hardness for bipartite graphs even for the case when all the profit functions are
equal.

Next, we consider the class of line graphs of bipartite graphs. Recall that for a given graph
G, its line graph has a vertex for each edge of G, with two distinct vertices adjacent in the line
graph if and only if the corresponding edges share an endpoint in G. We can show:

Theorem 2 For each integer k ≥ 2, the decision version of Fair k-Division Under Con-
flicts is strongly NP-complete in the class of line graphs of bipartite graphs.

The proof is based on a reduction from the following NP-complete problem (see [10]):
Given a bipartite graph and an integer q, does the graph contain a perfect matching and a
disjoint matching of size q?

3 Pseudo-polynomial algorithms for special graph classes
After extending the hardness results in Section 2, we also want to identify graph classes which
permit positive results. Since the problem is already weakly NP-hard on an edgeless conflict
graph, the best we can hope for are pseudo-polynomial algorithms. Since the strong NP-
hardness shown in Theorem 1 rules out such a result for Fair k-Division Under Conflicts
on bipartite graphs, we consider a relevant subclass thereof, namely the class of biconvex
bipartite graphs.

A bipartite graph G = (A ∪ B, E) is biconvex if it has a biconvex ordering, that is, an
ordering of A and B such that for every vertex a ∈ A (resp. b ∈ B) the neighborhood N(a)
(resp. N(b)) is a consecutive interval in the ordering of B (resp. ordering of A).

First of all, we develop a solution for the class of cocomparability graphs. A graph G = (V, E)
is a comparability graph if it has a transitive orientation, that is, if each of the edges {u, v} of
G can be replaced by exactly one of the ordered pairs (u, v) and (v, u) so that the resulting
set A of directed edges is transitive. A graph G is a cocomparability graph if its complement
is a comparability graph. Comparability graphs and cocomparability graphs are well-known
subclasses of perfect graphs. The class of cocomparability graphs is a common generalization
of the classes of interval graphs, permutation graphs, and trapezoid graphs (cf. [5]). Since
every bipartite graph is a comparability graph, Theorem 1 implies that for each k ≥ 2, Fair
k-Division Under Conflicts is strongly NP-complete in the class of comparability graphs.
For cocomparability graphs, we managed to construct a highly non-trivial algorithm which
permits the following statement.

Theorem 3 For every k ≥ 1, Fair k-Division Under Conflicts is solvable in time
O(nk+2(Q + 1)k) for cocomparability conflict graphs G, where Q = max1≤j≤k pj(V (G)).

To tackle the problem on biconvex bipartite conflict graphs G, we use a structural result
that allows an ordering of the vertices of G such that the first and last vertices on one side
have a special structure and the remaining part of the graph is a bipartite permutation graph,
i.e., a special case of a cocomparability graph.

Our algorithm enumerates a large, but pseudo-polynomial number of configurations for the
first and last vertices on one side and solves for each such configuration the resulting instance on



a bipartite permutation graph by the algorithm indicated in Theorem 3. This can be combined
to the following result:

Theorem 4 For every k ≥ 1, Fair k-Division Under Conflicts is solvable in
time O(n3k+2(Q + 1)k) for connected biconvex bipartite conflict graphs G, where Q =
max1≤j≤k pj(V (G)).
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