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Abstract
The tree breadth tb(G) of a connected graph G is the smallest non-negative integer

ρ such that G has a tree decomposition whose bags all have radius at most ρ. We
show that, given a connected graph G of order n and size m, one can construct in time
O(m logn) an additive tree O

(
tb(G) logn

)
-spanner of G, that is, a spanning subtree T

of G in which dT (u, v) ≤ dG(u, v) + O
(
tb(G) logn

)
for every two vertices u and v of

G. This improves earlier results of Dragan and Köhler (Algorithmica 69 (2014) 884-
905), who obtained a multiplicative error of the same order, and of Dragan and Abu-Ata
(Theoretical Computer Science 547 (2014) 1-17), who achieved the same additive error
with a collection of O(logn) trees.

Keywords : Combinatorial optimization, graph theory, additive tree spanner, multiplicative
tree spanner, tree breadth, tree length.

1 Introduction
In the present paper we show how to construct in time O(m log n), for a given connected graph
G of order n and sizem, a tree spanner that approximates all distances up to some additive error
of the formO(ρ log n), where ρ is the so-called tree breadth ofG [8]. Our result improves a result
of Dragan and Köhler [8] who show that one can construct in time O(m log n) a multiplicative
tree O(ρ log n)-spanner for a given graph G as above, that is, we improve their multiplicative
error to an additive one of the same order. Our result also improves a result by Dragan and
Abu-Ata [6] who show how to efficiently construct O(log n) collective additive tree O(ρ log n)-
spanners for a given graph G as above. Note that they obtain the same additive error bound
but require several spanning trees that respect this bound only collectively, more precisely, for
every pair of vertices, there is a tree in the collection that satisfies the distance condition for
this specific pair. Not restricting the spanners to trees allows better guarantees; Dourisboure,
Dragan, Gavoille, and Yan [5], for instance, showed that every graph G as above has an
additive O(ρ)-spanner with O(ρn) edges. For more background on additive and multiplicative
(collective) (tree) spanners please refer to [2, 5–9,11] and the references therein.

Before we come to our results in Section 2, we collect some terminology and definitions. We
consider finite, simple, and undirected graphs. Let G be a connected graph. The vertex set,
edge set, order, and size of G are denoted by V (G), E(G), n(G), and m(G), respectively. The
distance in G between two vertices u and v of G is denoted by dG(u, v). For a vertex u of G
and a set U of vertices of G, the distance in G between u and U is

dG(u, U) = min {dG(u, v) : v ∈ U},

and the radius radG(U) of U in G is

min {max {dG(u, v) : v ∈ U} : u ∈ V (G)},

that is, it is the smallest radius of a ball around some vertex u of G that contains all of U .
Note that the vertex u in the preceding minimum is not required to belong to U , and that all
distances are considered within G.



Let H be a subgraph of G. For a non-negative integer k, the subgraph H is k-additive if

dH(u, v) ≤ dG(u, v) + k (1)

for every two vertices u and v of H. If, additionally, the subgraph H is spanning, that is, it
has the same vertex set as G, then H is an additive k-spanner of G. Furthermore, if, again
additionally, the subgraph H is a tree, then H is an additive tree k-spanner of G. Replacing
the inequality (1) with

dH(u, v) ≤ k · dG(u, v)

yields the notions of a k-multiplicative subgraph, a multiplicative k-spanner, and a multiplicative
tree k-spanner of G, respectively.

For a tree T , let B(T ) be the set of vertices of T of degree at least 3 in T , the so-called
branch vertices, and let L(T ) be the set of leaves of T .

A tree decomposition of G is a pair
(
T, (Xt)t∈V (T )

)
, where T is a tree and Xt is a set of

vertices of G for every vertex t of T such that

• for every vertex u of G, the set {t ∈ V (T ) : u ∈ Xt} induces a non-empty subtree of T ,
and

• for every edge uv of G, there is some vertex t of T such that u and v both belong to Xt.

The set Xt is usually called the bag of t. The maximum radius

max {radG(Xt) : t ∈ V (T )}

of a bag of the tree decomposition is the breadth of this decomposition, and the tree breadth
tb(G) of G [8] is the minimum breadth of a tree decomposition of G. While the tree breadth is
an NP-hard parameter [10], one can construct in linear time, for a given connected graph G, a
tree decomposition of breadth at most 3tb(G) [1], cf. also [3, 4, 8] involving the related notion
of tree length.

2 Results
For a tree T , let pbt(T ) be the maximum depth of a perfect binary tree that is a topological
minor of T . In some sense pbt(T ) quantifies how much T differs from a path.

Our main result is the following.

Theorem 1 Given a connected graph G of size m and a tree decomposition
(
T, (Xt)t∈V (T )

)
of

G of breadth ρ, one can construct in time O(m·pbt(T )) an additive tree 8ρ(2pbt(T )+1)-spanner
of G.

Some immediate consequences of Theorem 1 are the following.

Corollary 1 Given a connected graph G of order n and size m, one can construct in time
O(m log n) an additive tree O(tb(G) log n)-spanner of G.

Proof : As observed towards the end of the introduction, given G, one can construct in
linear time a tree decomposition

(
T, (Xt)t∈V (T )

)
of G of breadth at most 3tb(G). Possibly by

contracting edges st of T with Xs ⊆ Xt, we may assume that n(T ) ≤ n. Since a perfect binary
tree of depth b has 2b+1 − 1 vertices, it follows that 2pbt(T )+1 − 1 ≤ n(T ) ≤ n, and, hence,

pbt(T ) ≤ log2(n+ 1)− 1.

Applying Theorem 1 allows to construct in time O(m · pbt(T )) = O(m log n) an additive tree
24tb(G)(2 log2(n+ 1)− 1)-spanner of G. �



Corollary 2 Given a connected graph G of order n and size m, and a multiplicative tree
k-spanner T of G, one can construct in time O(mn) an additive tree O(k log n)-spanner of G.

Proof : For every vertex u of G, let Xu be the set containing all vertices v of G with
dT (u, v) ≤

⌈
k
2

⌉
. Since T is a multiplicative tree k-spanner, it follows easily that

(
T, (Xt)t∈V (T )

)
is a tree decomposition of G of breadth at most

⌈
k
2

⌉
, cf. also [8]. Note that (Xt)t∈V (T ) can be

determined by n breadth first searches, each of which requires O(m) time. Applying Theorem
1 allows to construct in time O(m · pbt(T )) = O(m log n) an additive tree O(k log n)-spanner
of G. �

Note that if the tree T in Theorem 1 is a path, then we obtain an additive tree O(ρ)-
spanner. Kratsch et al. [11] constructed a sequence of outerplanar chordal graphs G1, G2, . . .,
which limit the extend to which Theorem 1 can be improved. The graph G1 is a triangle, and,
for every positive integer k, the graph Gk+1 arises from Gk by adding, for every edge uv of
Gk that contains a vertex of degree 2 in Gk, a new vertex w that is adjacent to u and v. It
is easy to see n(Gk) = 3 · 2k−1 and that tb(Gk) = 1 for every positive integer k, in particular,
we have k − 1 = log2

(
n(Gk)

3

)
. Now, Kratsch et al. showed that Gk admits no additive tree

(k − 1)-spanner, that is, the graph Gk admits no additive tree tb(Gk) log2

(
n(Gk)

3

)
-spanner.

Our proof of Theorem 1 relies on four lemmas. The first is a simple consequence of elementary
properties of breadth first search

Lemma 2 Given a connected graph G of size m, a subtree S of G, and a set U of vertices of
G, one can construct in time O(m) a subtree S′ of G containing S as well as all vertices from
U such that

(i) dS′(u, V (S)) = dG(u, V (S)) for every vertex u in U , and

(ii) L(S′) ⊆ L(S) ∪ U .

The following lemma was inspired by Lemma 2.2 in [11]. It will be useful to complete the
construction of our additive tree spanner starting from a suitable subtree.

Lemma 3 Given a connected graph G of size m and a ρ-additive subtree S of G such that
dG(u, V (S)) ≤ ρ′ for every vertex u of G, one can construct in time O(m) an additive tree
(ρ+ 4ρ′)-spanner of G.

Proof : Let S′ be the spanning tree of G obtained by applying Lemma 2 to G, S, and
V (G) \ V (S) as the set U . We claim that S′ has the desired properties. Therefore, let u and
v be any two vertices of G. Let u′ be the vertex of S closest to u within S′, and define v′
analogously. Clearly, we have that dS′(u, u′) = dG(u, u′) ≤ ρ′, dS′(v, v′) = dG(v, v′) ≤ ρ′, and
dS′(u′, v′) = dS(u′, v′) ≤ dG(u′, v′) + ρ. By several applications of the triangle inequality, we
obtain

dS′(u, v) = dS′(u, u′) + dS(u′, v′) + dS′(v′, v)
≤ ρ′ + dG(u′, v′) + ρ+ ρ′

≤ dG(u′, u) + dG(u, v) + dG(v, v′) + ρ+ 2ρ′

≤ dG(u, v) + ρ+ 4ρ′,

which completes the proof. �

Our next lemma states that pbt(T ) can easily be determined for a given tree T , by con-
structing a suitable finite sequence

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td(T ) (2)



of nested trees. The construction of this sequence is also important for the proof of our main
technical lemma, cf. Lemma 5 below. The sequence starts with T0 equal to T . Now, suppose
that Ti has been defined for some non-negative integer i. If B(Ti) is not empty, then let Ti+1 be
the minimal subtree of Ti that contains all vertices from B(Ti), and continue the construction.
Note that in this case

B(Ti) = B(Ti+1) ∪ L(Ti+1).
Otherwise, if B(Ti) is empty, then Ti is a path of some length `. If ` ≥ 3, then let Ti+1 be the
tree containing exactly one internal vertex of Ti as its only vertex, and let d(T ) = i+1. Finally,
if ` ≤ 2, then let d(T ) = i. Once d(T ) has been defined, the construction of the sequence (2)
terminates.

Lemma 4 pbt(T ) = d(T ) for every tree T .

The following is our core technical lemma.

Lemma 5 Given a connected graph G of size m and a tree decomposition
(
T, (Xt)t∈V (T )

)
of

G of breadth ρ, one can construct in time O(m · d(T )) a 16ρ · d(T )-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Theorem 1 now follows immediately by combining Lemma 5 with Lemma 3, choosing ρ′

equal to 2ρ for the latter. Note that, since the tree S produced by Lemma 5 intersects every
bag of the tree decomposition, we have dG(u, V (S)) ≤ 2ρ for every vertex u of G.
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