
Efficient solutions for the Green Vehicle Routing Problem with
Capacitated Alternative Fuel Stations

M. Bruglieri1, D. Ferone2, P. Festa3, O. Pisacane4

1 Dipartimento di Design, Politecnico di Milano, Italy
maurizio.bruglieri@polimi.it

2 Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, Universitá della Calabria, Italy
danieleferone@gmail.com

3 Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Universitá degli Studi di Napoli
Federico II

paola.festa@unina.it
4 Dipartimento di Ingegneria dell’Informazione, Universitá Politecnica delle Marche, Italy

o.pisacane@univpm.it

Abstract

In this paper, we propose a metaheuristic approach for efficiently solving the Green
Vehicle Routing Problem with Capacitated Alternative Fuel Stations (G-VRP-CAFS). The
G-VRP-CAFS, a variant of the traditional G-VRP, aims at routing a fleet of Alternative
Fuel Vehicles (AFVs), based at a common depot, in order to serve a set of customers,
minimizing the total travel distance. Due to the limited autonomy of the AFVs, some
stops at Alternative Fuel Stations (AFSs) may be necessary during each trip. Unlike
the G-VRP, in the G-VRP-CAFS, the AFS capacity, in terms of fueling pumps that are
simultaneously available, is realistically assumed limited. For such a problem, we design
an Iterated Local Search algorithm, in order to obtain good quality solutions in reasonable
amount of time also on real-life alike case studies. Preliminary results, carried out on a
set of benchmark instances taken from the literature, are promising.
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1 Introduction and statement of the problem
The recent technological developments are making more and more the Alternative Fuel Vehi-
cles (AFVs) competitive with regard to the traditional Internal Combustion Engine Vehicles
(ICEVs). In particular, since the AFVs use alternative fuel (e.g., methane, hydrogen, elec-
tricity and so on), they are currently representing the right answer to the worries due to the
climatic and environmental conditions. Moreover, because the transportation sector is respon-
sible of about the 23% of the global CO2, several companies operating in the Logistics field are
currently using AFVs for distributing goods and serving customers.

However, the AFVs usually require some stops during the trips for being refueled but cur-
rently, the Alternative Fuel Stations (AFSs) are not widespread across the territory. Therefore,
the problem of properly routing them arises. This problem, introduced in the literature by
the seminal work of [4], is called the Green Vehicle Routing Problem (G-VRP). It consists in
routing a fleet of m AFVs, based at a common depot, in order to serve a set of customers, min-
imizing the total travel distance. Each route starts from the depot, serves a set of customers,
with possibly stops at AFSs, and returns to the depot within a maximum duration Tmax. The
G-VRP is represented on a directed complete graph G = (N,A), where N represents the set
of nodes including the set of customers I, the depot (denoted by 0) and the set of AFSs F .



Instead, A denotes the set of arcs. For each pair of node (i, j) ∈ A, the travel distance dij is
given and assuming an average speed v, the travel time tij = dij/v is also known. For each
customer i ∈ I, the service time pi is given as well as for each AFS s ∈ F , the constant time ps

to fully refuel a vehicle is known. Instead, pstart represents the time spent at the depot, before
the route starts, when it is considered an AFS itself. For each AFV, the maximum fuel capacity
Q is given and assuming a fuel consumption r linearly proportional to the travel distance, one
can easily derive the maximum distance, Dmax, an AFV can travel without stopping at any
AFS, i.e., Dmax = Q/r.
In the original G-VRP, no limit on the AFS capacity is considered, i.e., an unlimited number
of fueling pumps is implicitly assumed for each AFS. In order to overcome this unrealistic
assumption, in [2], the G-VRP with Capacitated AFSs (G-VRP-CAFS) was introduced, as-
suming that ηs fueling pumps are available, in each AFS s. This means that only ηs AFVs
can simultaneously refuel at each AFS s. The G-VRP-CAFS was addressed by the authors
in both a public and a private scenario. In the public scenario, the AFSs are not owned by
the transportation company and it is assumed that fueling pumps can be reserved in order
to avoid queues. As a consequence, the pumps are available only on specific multiple time
windows to take into account the reservations already made by the other AFVs. The authors
mathematically formulated both the scenarios through an arc-based and a path-based model,
the last solved also through cutting-plane based exact methods. In particular, the path-based
formulations are inspired by that already proposed for the G-VRP by the same authors in [1].
A path is made up by a sequence of customers served either between the depot and a station,
or a station and the depot or the depot and itself (i.e., a route without stops at stations).
A path is feasible when its total travel distance and time do not overcome Dmax and Tmax,
respectively. Due to these limitations, the number of feasible paths is somehow limited and
can be exhaustively generated a-priori. Moreover, it was further limited by the authors in-
troducing some dominance rules. Then, pairs of compatible paths are determined and given
in input to the path-based model that selects those that belong to the optimal solution, i.e.,
that with the minimum total travel distance. However, when the number of customers to be
served increases, the path-based approach can become impracticable since the number of pairs
of compatible paths given to the model can become huge. Therefore, alternative solution ap-
proaches, such as metaheuristics, are necessary in order to address also real-life alike instances.
For this reason, in this work, we propose an Iterated Local Search metaheuristic. In Section
2, the Iterated Local Search is presented, whereas in Section 3, some preliminary results are
shown and discussed.

2 An Iterated Local Search for the G-VRP-CAFS

Iterated Local Search (ILS) can be considered a general stochastic local search method that
aims at iteratively perturbing the current solution through a local search [6]. It consists of the
following main blocks: an initial solution generation procedure that builds a feasible solution
used as the starting point of the search; a local search procedure that improves locally the
current solution and that is based on the definition of a suitable neighborhood on which the
space of the solutions depends; a perturbation step that generates a new solution starting from
the current one; an acceptance criterion according to which a new solution is considered the
new starting point or not. The algorithm ends when a stopping criterion is met (typically,
based on the maximum number of iterations without improvements).
Generation of the initial solution. In order to construct the initial solution, we use a
variant of the well-known Clarke and Wright Savings (CWS) heuristic [3]. Generally, CWS
begins with a solution made of all round-trip routes from the depot to each customer, and
iteratively merges the two routes that result in the higher saving cost. Our CWS has been
modified in order to manage the feasibility problems due to both maximum distance Dmax and
the shortage of free refuel pumps.

Indeed, when two routes r1, r2 are selected for a merge, the procedure checks if the resulting



route r is feasible with respect to the maximum distance Dmax without stopping at any AFS.
In case r is feasible, r1 and r2 are merged and the resulting saving is given by dij − di0 − dj0,
where i is the last customer visited by r1, and j is the first customer visited in r2.

On the contrary, if r is not feasible with respect to Dmax, the procedure checks if there exists
a position where the resulting route can be deviated to an available AFS.

For the sake of clarity, an example is reported in Figure 1. The routes in Figure 1(a) cannot
be merged due to maximum travel distance, therefore the procedure verifies if it is possible to
include the AFS 5 in all the positions (Figures 1(b–f)), checking that there are free pumps in
that time window.
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FIG. 1: Merging and AFS insertion example.

It is worth noting that, unlike the standard CWS where all merges result in a cost saving,
some of these merging operations can lead to an increase of the current cost, but can still be
profitable due to a reduction of the number of routes (i.e., used vehicles).

After calculating all the possible merging operations, the procedure sorts them respect to
the saving cost, and randomly chooses among them with a skewed (or biased) distribution
probability, in order to encourage the selection of the most favorable merges [5].

Perturbation phase. The perturbation phase performs three steps. The first step removes
a percentage p of nodes from the current routes and for each of them builds a new round-trip
route. In the second step, the procedure analyzes the routes from which a node has been
removed and checks if there is an AFS visit that can be dropped, since the route is shorter.
Finally, the CWS procedure is executed using the current routes as input and tries to merge
them.

Local search phase. The local search removes a node v from a route r and inserts it into a
feasible position of a route r′ (r′ can also be equal to r). The insertion in r′ follows a similar
scheme as in Figure 1. Indeed, when an insertion position is evaluated, if the resulting route
is not feasible with respect to Dmax, the procedure tries to fix the route planning a visit to an
available AFS.

For each node, the local search follows a best improvement strategy. Therefore, given a
customer v, it evaluates all the insertion positions and selects the one that results in the best
cost improvement, if it exists. The local search iterates on all the customers until no further
improvements are possible.

Acceptance criterion At the end of the local search, the new solution s′ is compared with
the base solution s. If s′ corresponds to a better cost c(s′) than c(s), then s′ replaces s as base
solution. Otherwise, in order to not being trapped in the same local optimum, a pejorative
solution is accepted as base solution with a probability of e−RP D, where RPD is the relative
percentage difference given by RPD = c(s′)−c(s)

c(s) . With this rule, the better is the solution, the
higher is the acceptance probability.



3 Results and conclusions
In order to evaluate the proposed approach, a preliminary test has been performed on the
benchmark of TRIANGLE instances used in [2]. The set is composed by 10 instances with
15 customers, 3 AFSs and 10 vehicles. Given their layout, the instances can be considered
medium challenging for an exact solver (consideration confirmed by the experiments in [2]).

The algorithm has been implemented in Java and the tests have been executed on a INTEL
i5-6400@2.70 GHz processor with 8GB of RAM. We used as stopping condition the reaching
of 2000 iterations without improvement.

TAB. 1: Computational results

CP-proactive ILS
Total-distance CPU Total-distance CPU %-gap

Triangle1 1871.61 1.04 1871.61 1.80 0.00
Triangle2 2191.73 4.09 2258.48 1.94 3.05
Triangle3 1872.12 4.56 1872.12 2.12 0.00
Triangle4 1869.07 4.52 1963.83 1.80 5.07
Triangle5 1852.73 11.02 1972.42 2.03 6.46
Triangle6 1865.49 5.25 1876.49 1.87 0.59
Triangle7 1898.00 3.10 1922.16 1.88 1.27
Triangle8 2197.49 13.76 2321.31 2.04 5.63
Triangle9 1862.50 6.30 2005.62 1.90 7.68
Triangle10 1864.73 5.04 1975.26 1.97 5.93
Average 1934.55 5.87 2003.93 1.93 3.59

The results are reported in Table 1. The results of ILS are an average on 5 runs for each
instance. The CP-proactive is the proactive cutting planes proposed in [2]. The results show
how the ILS reaches near optimal solutions (with a gap of 3.59% on average) in shorter times.
Despite these results are preliminary, they are also encouraging. In particular, we plan to
improve the local search phase using a Variable Neighborhood Search.
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