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Abstract

The problem of equitable edge coloring of hypertrees can be reformulated as equitable
vertex coloring of chordal graphs. Motivated by this observation we focus on equitable
vertex colorings of chordal graphs. Since the problem is NP-hard in this class, in the
paper we consider its restriction to block graphs which form a proper subset of chordal
graphs. Recall that an equitable vertex coloring of a graph G is a proper vertex coloring
of G such that the sizes of any two color classes differ by at most one. If G is a graph
and v is a vertex, then let α(G, v) be the size of a largest independent set of G containing
v. Moreover, let αmin(G) = minv∈V (G) α(G, v). In this paper, we conjecture that for
any block graph G the smallest number of colors admitting equitable vertex coloring of
G is not greater than 1 + max

{
ω(G),

⌈
|V (G)|+1
αmin(G)+1

⌉}
, where ω(G) is the size of a largest

clique of G. The results obtained in the paper support this conjecture. More precisely, we
verify it in the class of well-covered block graphs, which are block graphs in which each
vertex belongs to a maximum independent set. We also show that the conjecture is true
for block graphs with αmin(G) ≤ 2. In order to derive our results we obtain structural
characterizations of the corresponding graphs.

Keywords : Block-graph, equitable coloring, chromatic spectrum, well-covered block graph,
linear hypertree.

1 Introduction
Let [k] = {1, . . . , k}. A k-coloring of hyperedges of hypergraph H = (V,E) is a mapping
c : E→ [k] such that no two edges that share a vertex get the same color. An edge k-coloring
of H = (V,E) is equitable if each color class is of size dm/ke or bm/kc. The smallest k such that
H admits an equitable edge k-coloring is called the equitable chromatic index and is denoted
by χ′=(H).

It is easy to notice that an edge coloring of a hypergraph is equivalent to a vertex coloring
of its line graph. A k-coloring of vertices of simple graph G = (V,E) is an assigning colors
from the set [k] to vertices in such a way that no two adjacent vertices receive the same
color. A vertex k-coloring is equitable if each color class is of size d|V |/ke or b|V |/kc. The
smallest k such that G admits an equitable vertex coloring is called the equitable chromatic
number of G is denoted by χ=(G). Moreover, note that for a general graph G if it admits an
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equitable vertex t-coloring it does not imply that it admits an equitable vertex (t+ 1)-coloring
(cf. for example t = 2 and G = K3,3). That is why we also consider the concept of equitable
chromatic spectrum, i.e. the set of colors admitting equitable vertex coloring of the graph.
The smallest k such that G admits an equitable vertex t-coloring for every t ≥ k is called the
equitable chromatic threshold and is denoted by χ∗=(G). If χ∗=(G) = χ=(G) then we say that
the equitable chromatic spectrum of G is gap-free.

Despite the fact that the corresponding problem for simple graphs has been widely studied,
its generalization to hypergraphs does not seem to have been addressed in the literature. To the
best of our knowledge there is no paper in the literature that concerns the problem of equitable
edge coloring of hypergraphs with the definition given above. Hypergraphs in general are very
useful in real-life problems modeling, for example in chemistry, telecommunications, and many
other fields of science and engineering. Thus, generalization of equitable coloring of simple
graphs to hypergraphs seems to be justified. It is known that the model of equitable coloring
of simple graphs has many applications, among others in task scheduling ([5]). Every time
when we have to divide a system with binary conflict relations into equal or almost equal
conflict-free subsystems we can model this situation by means of equitable graph coloring.

In the paper we have put the question about chordal graphs and their subclasses, and the
complexity status of the problem of equitable vertex coloring for them. A graph is chordal if
every cycle of length at least 4 has a chord. It is also known that a graph G is a chordal graph
if and only if it is a line graph of a hypertree, where hypertree is defined as a hypergraph that
has an underlying tree. Thus equitable edge coloring of hypertrees is equivalent to equitable
vertex coloring of chordal graphs. On the other hand, we know (cf. [1], [2]) that the problem
of equitable vertex coloring of interval graphs is NP-hard. Since each interval graph is also
chordal, we have also NP-hardness of the problem for chordal graphs and in consequence the
problem of an equitable edge coloring of hypertrees is also NP-hard. When we take into
account the notion of tree-decomposition and classical parameter treewidth of any graph, we
may precise the computational complexity of the problem of equitable vertex coloring of some
classes of graphs. Bodlaender [1] proved that the problem can be solved in polynomial time
for graphs with given tree decomposition and for fixed k. The treewidth of a chordal graph
equals the maximum clique size minus one. Bodlaender [1] proved also that the problem of
an equitable vertex k-coloring is solvable in polynomial time for graphs with bounded degree
even if k is a variable. Thus, the problem of an equitable vertex k-coloring is solvable in
polynomial time for chordal graphs with bounded maximum clique size. On the other hand,
Gomes et al. [4] proved that, when the treewidth is a parameter to the algorithm, the problem
of equitable vertex coloring is W[1]-hard. Thus, it is unlikely that there exists a polynomial
time algorithm independent of this parameter. In this paper we address our interest to block
graphs which are the graphs with every 2-connected component being a clique, where a clique
of a graph G is a maximal complete subgraph of G, of size at least two. For block graphs,
it is shown in [4] that the problem of equitable vertex coloring is W[1]-hard with respect to
the treewidth, diameter and the number of colors. This in particular means that under the
standard assumption FPT 6=W[1] in parameterized complexity theory, the problem is not likely
to be polynomial time solvable in block graphs.

2 Main results

In what follows when we refer to equitable coloring we mean equitable vertex coloring unless
stated differently. For a graph G let α(G) be the size of a largest independent set in G, while
α(G, v) is the size of a largest independent set that contains the vertex v in G. Define αmin(G)
as minv∈V (G) α(G, v). Clearly, αmin(G) ≤ α(G), and αmin(G) = α(G) if and only if every
vertex of G lies in a maximum independent set of G. Such graphs are known in the literature
as the well-covered graphs [6]. For every graph, not necessarily a block graph, it is easy to



observe that
χ=(G) ≥ max

{
ω(G),

⌈ |V (G)|+ 1
αmin(G) + 1

⌉}
. (1)

Indeed, the equitable chromatic number of a graph G cannot be less than its clique number
as well it cannot be less than d |V (G)|+1

αmin(G)+1e what is followed by the assumption that one color is
used exactly αmin(G) and any other can be used at most αmin(G) + 1. It turns out that the
number of colors given by the expression on the right side of the inequality is not sufficient to
color equitably every block graph. For example, take a clique of size k, k ≥ 2, and add k + 1
pendant cliques of size k + 1 to each vertex (cf. Fig. 1).

FIG. 1: The k = 2 case of the counter-example.

The gap between χ=(G) and max
{
ω(G),

⌈
|V (G)|+1
αmin(G)+1

⌉}
in the above given example is one. This

prompted us to the conjecture:

Conjecture 1 For any block graph G, we have:

max
{
ω(G),

⌈ |V (G)|+ 1
αmin(G) + 1

⌉}
≤ χ=(G) ≤ 1 + max

{
ω(G),

⌈ |V (G)|+ 1
αmin(G) + 1

⌉}
.

We have confirmed the conjecture for all block graphs on at most 19 vertices, using a computer.
Moreover, the conjecture is true for forests, i.e. for block graphs with ω(G) = 2 [3]. Since the
class of connected block graphs in which each cut vertex is on exactly two blocks is equivalent
to line graphs of trees, we have χ′=(T ) = χ=(G), for a tree T and its line graph G, L(T ) = G.
Since trees are of Class 1 (i.e. χ′=(T ) = ∆(T )) and ∆(T ) = ω(L(T )) for a tree T , then we
have χ=(G) = ω(G) for connected block graphs in which each cut vertex is on exactly two
blocks. Thus our conjecture is true for such block graphs. Moreover, since an arbitrary simple
graph G is equitably edge k-colorable for every k ≥ χ′=(G), then χ∗=(G) = χ=(G) and the
equitable chromatic spectrum of block graph in which each cut vertex is on exactly two blocks
is gap-free.
In this paper we prove the conjecture for well-covered block graphs, using unusual tool of
Ferrers matrix, as well as for block graphs with small value of αmin.

Theorem 1 Let G be a well-covered block graph. Then G is equitably k-colorable for all
k ≥ ω(G).

Theorem 2 Conjecture 1 is true for every connected block graph G with αmin(G) ∈ {1, 2}.

Proofs of the above given theorems are preceded by complete characterization of subject
subclasses of block graphs.

3 Conclusion and future work
We considered Conjecture 1, which was offering a bound for equitable chromatic number, such
that the difference between the upper and lower bounds is at most one. Moreover, both of the
bounds are computable in polynomial time. Thus, in some sense, the situation is similar to the
chromatic index of graphs, where for simple graphs there is the classical theorem of Vizing and
for multigraphs there is the Goldberg conjecture, where a similar gap-one bound is offered for
this parameter in the class of all multigraphs. We verified our conjecture for various subclasses



of block graphs. Moreover, we gave various examples of block graphs, for which both lower and
upper bounds of Conjecture 1 are tight. Usually, when one considers equitable colorings, there
are two parameters that one takes into account: the smallest number of colors in an equitable
coloring of a graph (equitable chromatic number, χ=(G)), and the smallest k, such that the
graph admits an equitable t-coloring for any t ≥ k (equitable chromatic threshold, χ∗=(G)). As
complete bipartite graphs show, these two parameters are not always the same. However,our
results confirm our belief that these two parameters have to be the same in the class of block
graphs, though we do not have a complete proof of this statement.

One may wonder whether the statement of Conjecture 1 can be extended to arbitrary graphs.
In order to see that this extension cannot be true, consider the complete tripartite graph
G = K3,5,7. What is even more interesting that the conjecture cannot be extended even
into the whole class of chordal graphs. We found the smallest chordal graph, for which the
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FIG. 2: An example of chordal graph with its equitable coloring.

inequalities form Conjecture 1 do not hold (cf. Fig. 2). Note that in our exemplary graph
we have two vertices v1, v2, the ones of the highest degree, such that they realise αmin(G),
and when we assign color one to vertices from the largest independent set including v1, the
second vertex, v2 forms maximal independent set, of size 1. So, we have to partition the rest of
vertices into minimum number of independent sets of size at most 2. In consequence, by adding
vertices of degree 2 that are adjacent to v1 and v2, vertices u1, . . . , un, we are able to create
arbitrary large chordal graphs with large equitable chromatic number. Thus, the difference
between χ=(G) and the maximum from Conjecture 1 can be arbitrary large for general chordal
graphs.

From our perspective, proving Conjecture 1 and the equality χ=(G) = χ∗=(G) for block
graphs seem promising for future work. It seems also desirable to prove inequalities from
Conjecture 1 for other interesting graph classes. In other words, we would like to find other
graph classes where the bounds offered by Conjecture 1 are going to hold.

References
[1] H. L. Bodlaender and F.V. Fomin. Equitable colorings of bounded treewidth graphs. The-

oretical Computer Science, 349:22–30, 2015.

[2] H. L. Bodlaender and K. Jansen. Restrictions of graph partition problems. Part I. Theo-
retical Computer Science, 148:93–109, 1995.

[3] G. J. Chang. A note on equitable colorings of forests. European J. Combinatorics,
30(4):809–812, 2009.

[4] G. de C.M. Gomes, C.V.G.C. Lima, and V.F. dos Santos. Parameterized complexity of
equitable coloring. Disc. Math. & Theor. Comp. Sci., 21(1), 2019.

[5] H. Furmańczyk and M. Kubale. Scheduling of unit-length jobs with bipartite incompatibil-
ity graphs on four uniform machines. Bulletin of the Polish Academy of Sciences: Technical
Sciences, 65(1):29–34, 2017.

[6] M.D. Plummer. Some covering concepts in graphs. J. Combinatorial Theory, 8:91–98, 1970.


