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Abstract

Real numbers from the interval [0, 1] are randomly selected with uniform distribution.
There are n of them and they are revealed one by one. However, we do not know
their values but only their relative ranks. We want to stop on recently revealed number
maximizing the probability that that number is closest to 1

2 . We design an optimal
stopping algorithm achieving our goal and prove that for large n its probability of success
is of order

√
2
π

1√
n

.
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1 Introduction

Consider the following online problem: n numbers randomly selected from the interval [0, 1]
are presented to us one number at a time. After revealing t numbers, 1 ≤ t ≤ n, we know their
ranks but not their values. Our goal is to stop on the presently revealed number xt hoping that
xt is closest to 1

2 , the center of the interval, among all n numbers. We will construct an optimal
stopping algorithm and show that this algorithm, for large values of n, has the probability of
success of order

√
2
π

1√
n
.

This problem is a new relative of the classical secretary problem. In the classical secretary
problem, the goal is to choose the best of n linearly ordered objects. In our model, this
corresponds to choosing the object whose value is closest to 1. The classical secretary problem,
whose solution was derived by Lindley (1961), has attracted a lot of attention and many
generalizations of the classical problem have been studied, for example problems in which linear
orders have been replaced by partial orders (Morayne, 1998; Preater, 1999), or by a graph or
digraph structure (Kubicki & Morayne, 2005; Benevides & Sulkowska, 2017). Rogerson (1987)
derived the probability that the optimal algorithm for choosing the best candidate returns jth

candidate. There are still very natural questions referring to the classical secretary problem
that remain unanswered. It seems that choosing the middle rank element is the hardest one.
The problem we study in this paper is similar to choosing the middle rank element, but it is
not exactly the same. In our case, stopping on the element of middle rank does not guarantee
that this number would be closest to 1

2 . Also, stopping on elements other than the one of
middle rank gives a nonzero probability of success. Another difference is that since we refer
to a specific value, namely 1

2 , we have to make some assumption about the distribution of
incoming numbers whose ranks we observe. The most natural one seems to be the uniform
distribution.



2 Optimal Stopping Algorithm
Assume that n different numbers x1, x2, ..., xn from the interval [0, 1] are randomly selected,
with uniform distribution, and presented to us one by one. We know n in advance but after
revealing t numbers, 1 ≤ t ≤ n, we know only their relative ranks, not their values. Let’s
rename them such that, at that moment, we know their order y(t)

1 < y
(t)
2 < ... < y

(t)
t and we

know that the rank of xt is r; it means that xt = y
(t)
r . Our goal is to stop on the presently

revealed number xt maximizing the probability that |xt − 1
2 | ≤ |xi −

1
2 | for all i, 1 ≤ i ≤ n,

the probability that xt will be the closest to the midpoint of the interval; we will call such an
event "xt is the best".

Before constructing optimal stopping algorithm, we need two results providing formulas for
the probability that the number of specific rank is the best.

Theorem 1 If y1 < y2 < ... < yr < ... < yn are the ranked numbers at time n, then

Pr(yr is the best) =
(
n− 1
r − 1

)
· 1

2n−1 .

Proof : We have

Pr(yr is the best) = Pr
((
yr <

1
2 < yr+1

)
and

(
|yr −

1
2 | ≤ |yr+1 −

1
2 |
))

+ Pr
((
yr−1 <

1
2 < yr

)
and

(
|yr−1 −

1
2 | ≥ |yr −

1
2 |
))
.

Note that

Pr
((
|yr −

1
2 | ≤ |yr+1 −

1
2 |
)∣∣∣(yr < 1

2 < yr+1
))

= Pr
(

min{Z1, Z2, . . . , Zr} < min{Zr+1, Zr+2, . . . , Zn}
)

= r

n
,

where Z1, Z2, . . . , Zn are independent random variables drawn from the uniform distribution
on the interval [0, 1/2]. Analogously, we obtain

Pr
((
|yr−1 −

1
2 | ≥ |yr −

1
2 |
)∣∣∣(yr−1 <

1
2 < yr

))
= n− r + 1

n

and, finally,

Pr(yr is the best) =
(
n

r

)
· 1

2n ·
r

n
+
(

n

r − 1

)
· 1

2n ·
n− r + 1

n

= 1
2n
[ (n− 1)!

(r − 1)!(n− r)! + (n− 1)!
(r − 1)!(n− r)!

]
=
(
n− 1
r − 1

)
· 1

2n−1 .

�

Theorem 2 If y(t)
1 < y

(t)
2 < ... < y

(t)
r < ... < y

(t)
t are the ranked numbers at time t, then

Pr(y(t)
r will be the best) = 1

2n−1

n−t∑
j=0

(
n− 1

r − 1 + j

)(
n− t
j

)
rj(t+ 1− r)n−t−j

(t+ 1)n−t . (1)

Proof : Since n− t additional numbers will appear, the rank r of the number y(t)
r will increase

by some j, where 0 ≤ j ≤ n − t. Each number following y(t)
r will independently fall into one

of the intervals (0, y(t)
1 ), (y(t)

1 , y(t)
2 ), ..., (y(t)

t , 1) with the same probability, 1
t+1 . Every time

a number falls into one of the first r intervals, the rank of y(t)
r increases by 1. Therefore,



the probability that after the appearance of all n numbers, the rank of y(t)
r will be r + j is(n−t

j

) rj(t+1−r)n−t−j

(t+1)n−t . Thus, from Theorem 1,

Pr (y(t)
r will be the best | its rank is r + j) =

(
n− 1

r − 1 + j

)
1

2n−1

and formula (1) follows from the law of total probability. �

From now on, Pr(y(t)
r will be the best) will be abbreviated to P(t)

r . Also, we denote the
optimal algorithm from the set of algorithms that stop only in rounds t, t + 1, ..., n − 1, or n
by A(t)

n (i.e. such algorithms never stop before time t). We now construct an optimal stopping
algorithm An using recursion. Note that An = A(1)

n .
A(n)
n is the algorithm that stops only in the last round, thus the stopping interval for n is

[1, n] and Pr(A(n)
n succeeds) = 1

n .
Recursively, assume that for k = t+1, t+2, . . . , n we know the probabilities Pr(A(k)

n succeeds)
and the stopping interval [rn−k, k + 1 − rn−k] in round k. The optimal algorithm A(t)

n stops
on the number y(t)

r in round t if and only if its rank r satisfies the inequality

P(t)
r ≥ Pr(A(t+1)

n succeeds). (2)

If inequality (2) has a solution, then the solution set, which is a symmetric interval [rn−t, t+
1− rn−t], is the stopping interval for A(t)

n in round t and

Pr(A(t)
n succeeds) =

t+1−rn−t∑
r=rn−t

1
t
P(t)
r + 2(rn−t − 1)

t
Pr(A(t+1)

n succeeds). (3)

If there is no r satisfying inequality (2), then the algorithm A(t)
n never stops in round t and

Pr(A(t)
n succeeds) = Pr(A(t+1)

n succeeds).

The example below illustrates how the optimal stopping strategy looks like for n = 10.

t 10− t r10−t stopping interval Pr(A(t)
10 succeeds)

1 9 0.1893

2 8 0.1893

3 7 2 {2} 0.1893

4 6 0.1858

5 5 3 {3} 0.1858

6 4 3 [3, 4] 0.1798

7 3 3 [3, 5] 0.1701

8 2 4 [4, 5] 0.1585

9 1 4 [4, 6] 0.1378

10 0 1 [1, 10] 0.1
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Figure 1. Stopping intervals at time t and probabilities that the algorithm A(t)
n succeeds for

n = 10. Red cells denote the stopping region, which is the union of the stopping intervals over
all values of t.

As can be seen from the example, the stopping region for our algorithm An is rather irregular
and the recursive formulas used to calculate Pr(An succeeds) give little hope of finding a closed
formula for this probability. Despite these difficulties, in the next section we will derive the
asymptotic performance of the optimal algorithm An.



3 Asymptotics

First, we define the algorithm A(hn, wn), which is not optimal, but has a more regular stopping
region than the optimal algorithm An. This will be helpful in finding a reasonable lower bound
for the performance of An. The stopping region of the algorithm A(hn, wn) is defined by two
natural numbers hn and wn. This algorithm never stops before time hn. For t ≥ hn, it stops
on xt if and only if xt falls between y(t−1)

d t
2 e−wn

and y(t−1)
b t

2 c+wn
, where y(t−1)

1 < y
(t−1)
2 < ... < y

(t−1)
t−1

are the ordered numbers at time t− 1. If this never happens, A(hn, wn) stops at xn. Figure 2
illustrates the rectangular stopping region for the algorithm A(hn, wn). Note that n− hn + 1
and 2wn can be interpreted as the height and width of this stopping region, respectively.
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Figure 2. The stopping region for the algorithm A(hn, wn).

Using several technical lemmas, we arrive at the following result.

Theorem 3 For any sequences hn and wn of natural numbers such that hn ≤ n and 4w2
n < n,

we have
Pr(A(hn, wn) succeeds) ≥ v(hn, wn),

where v(hn, wn) is a function such that for wn −−−→
n→∞

∞

v(hn, wn) ∼ hn
n2n−1

(
n− 1

n−1
2 − wn

)
·
(

1−
(
1− 2wn

hn

)n−hn
)
.

There exist choices of the sequences hn and wn, for example wn = dn1/3e and hn = dn
(
1−

√
lnn
n1/3

)
e, for which the probability of success under the algorithm A(hn, wn) is bounded from

below by a function which asymptotically behaves like 1√
n

√
2
π . Since the optimal algorithm An

is not worse, this lower bound also applies to An. It remains to show that this function of n is
also asymptotically an upper bound for the performance of An. It can be done by considering
an easier online decision problem. Suppose that a decision maker observes the ranks of n
numbers which are independent realizations from the uniform distribution on the interval
[0, 1]. The decision maker must choose one of these numbers with the aim of maximizing the
probability of choosing the element which is closest to 1

2 . However, after all n numbers are
revealed, any number can be selected, not necessarily the last one. From Theorem 1, we know
that the optimal strategy is to select the number of rank r such that the binomial coefficient



(n−1
r−1
)
takes its maximum value. This happens if r − 1 = bn−1

2 c or r − 1 = dn−1
2 e. Thus

Pr
(
xr is the best

)
=
(
n− 1
bn−1

2 c

)
· 1

2n−1

giving the asymptotic performance of order 1√
n

√
2
π .

This leads to the following theorem.

Theorem 4 For the online decision problem considered here, the optimal stopping algorithm
An has asymptotic performance

Pr
(
An succeeds

)
∼ 1√

n

√
2
π
.

4 Final remarks
If the interval [0, 1] is replaced by the interval [a, b], where a < b, and the goal is to stop on
the element closest to the interval’s midpoint, then the optimal stopping algorithm is identical
to our algorithm An.

How does the situation change if we sequentially observe n numbers from the interval [0, 1],
but we are informed about the value of each number drawn? Since we now know whether the
revealed number is greater or smaller than 1

2 , by replacing each xk greater than 1
2 by 1 − xk,

we obtain a problem equivalent to finding the maximum element of a sequence of n numbers.
This problem was solved by Gilbert & Mosteller (1966) and the optimal strategy in what they
called ’the full-information game’ has an asymptotic probability of success approximately equal
to 0.580164. On the other hand, if our aim is to minimize the expected difference between
the number selected and 1

2 , then we should adopt another stopping algorithm from (Gilbert &
Mosteller, 1966) which gives an expected difference of order 1

n .
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