
An improved approximation algorithm for storage loading
problems with stacking constraints

Tobias Oelschlägel1, Sigrid Knust1

Institute of Computer Science, Osnabrück University, Osnabrück, Germany
{toelschlaege,sknust}@uni-osnabrueck.de

Abstract

We consider the problem of loading items into a storage area consisting of stacks which
can contain up to b items. Additionally, we are given directed stackability constraints
describing which items can be stacked directly on top of each other. For the case of transi-
tive stacking constraints, this problem is equivalent to partitioning a comparability graph
into cliques of size at most b. For minimizing the number of used stacks, Moonen and
Spieksma already presented a (2− 1

b)-approximation; here, we describe an improvement
of this algorithm to achieve an approximation ratio of 2− 3

2b for any b ≥ 3.

Keywords : storage loading, approximation, path partition

1 Introduction
We are given a set of n items that is to be inserted into a storage area consisting of stacks which
can contain up to b items. Moreover, hard stacking constraints have to be respected, which
are encoded by a matrix S = (sij) ∈ {0, 1}n×n where sij = 1 if and only if item i can directly
be stacked on top of item j. A feasible solution is an assignment of the items to positions
inside the stacks such that no gaps occur, no stack contains more than b items, and an item
i is directly placed above item j in the same stack only if sij = 1. Bruns et al. [1] showed
that deciding whether there exists a feasible solution that uses at most m stacks is possible
in polynomial time if b = 2 and that it is NP-complete if b = 3 and S is transitive. In this
paper, it is assumed that there is no restriction on the number of available stacks but instead
the objective of minimizing the number of used stacks is considered.

Based on the stacking constraint matrix S, define the directed stacking constraint graph
GS = (V, A) by V := {1, . . . , n} and A :=

{
(i, j) : sij = 1

}
. A feasible solution using m

stacks then corresponds to a partition of the vertices V into m vertex disjoint directed paths of
bounded length, i.e., paths containing no more than b vertices (or b−1 edges). We will refer to
a directed path consisting of k vertices as a k-path (consequently, a single vertex is a 1-path).
A feasible stacking configuration can be obtained from a path partition by assigning the items
of the i-th path to the i-th stack. The order of the items inside the stacks is the same as in
each path, e.g., the first item of the path is the top item and the last item is the bottom item.

The focus of this paper lies on transitive stacking constraints, which correspond to partial
orders defined on the set of items. For example, a height hi and length li could be associated
with every item i, and then only smaller items are allowed to be placed on top of larger items,
i.e., sij = 1 iff hi ≤ hj and li ≤ lj . Note that partial orders do not allow equivalent items,
i.e., items i, j with sij = sji = 1, due to antisymmetry; however, in the transitive case one can
always place the items of a maximal set of equivalent items into an arbitrary order because
the items of such set cannot be differentiated by the remaining items. Therefore, by modifying
the stacking matrix S to comply with such order of the items, it can be assumed that the
stacking constraint graph is acyclic. For transitive stacking constraints S consider also the
undirected comparability graph GC

S = (V, E) where E :=
{
{i, j} : sij = 1 or sji = 1

}
. Every

directed path in GS corresponds to a clique in GC
S due to the transitivity, and conversely, every

clique in GC
S is a totally ordered set of vertices and therefore it can be transformed into a

directed path in the directed graph GS by arranging the items according to the total order.
Consequently, finding a partition of GS into directed paths of bounded length is equivalent to
finding a partition of GC

S into cliques of bounded size if the stacking constraints are transitive.
In the following, the problem will be described from the perspective of partitioning the graph
GS into directed paths, but one can always exchange “path in GS“ by “clique in GC

S “. For
example, we want to note that removing any vertex from a directed path of length k in GS (a
clique of size k in GC

S) results in a directed path of length k − 1 (a clique of size k − 1).

2 Approximation algorithms
An approximation algorithm for minimizing the number of used stacks was given by Moonen
and Spieksma [2] and it provides an approximation ratio of 2− 1

b for b ≥ 3. More specifically,
they considered a more general version of our problem where vertices have weights, but ours
can be obtained by assuming that all vertices have the same weight. The approximation
algorithm is based on computing a minimum path cover of the directed stacking constraint
graph GS = (V, A). As S describes a partial order, it can be assumed that GS is acyclic and
therefore a minimum path cover can be computed efficiently by reducing it to the maximum
bipartite matching problem. Given such a minimum path cover, the lengths of the paths are
not restricted and if there are paths containing more than b vertices they need to be cut into
several shorter paths. If some path contains k > b vertices, then it can be cut into

⌈
k
b

⌉
paths

containing at most b vertices. Thus, the outline of the approximation algorithm is as follows:

1. Compute a minimum path cover P1, . . . , Pw of GS .

2. Cut each path Pi into
⌊
|Pi|

b

⌋
b-paths and one ri-path where ri := |Pi| mod b.

Now, let opt(S, b) be the minimum number of paths needed to cover GS with paths of
length at most b. To bound the approximation ratio, first observe that opt(S, b) ≥ n

b and
opt(S, b) ≥ w. For each i = 1, . . . , w we introduce a binary variable yi that is 1 if cutting path
Pi results in a path of length smaller than b, i.e., yi is 1 if ri > 0 and 0 otherwise. It then holds
for the objective value of the approximate solution that

apx =
w∑

i=1

⌈ |Pi|
b

⌉
=

w∑
i=1

|Pi| − ri

b
+

w∑
i=1

yi

=
w∑

i=1

|Pi|
b

+
w∑

i=1
(1− ri

b
)yi

≤ n

b
+ w(1− 1

b
) ≤ (2− 1

b
)opt(S, b)

It can be shown with an example that the approximation ratio is tight. In order to improve
the algorithm, we will describe how to modify the minimum path cover and how to cut the
long paths into smaller paths to ensure that there are at most w

2 paths consisting of a single
vertex. This will then lead to an improved approximation ratio:

apx ≤ n

b
+ w

2 (1− 1
b

) + w

2 (1− 2
b

) = n

b
+ w(1− 3

2b
) ≤ (2− 3

2b
)opt(S, b)

Let R := {Pi : |Pi| mod b = 1} be the set of paths with remainder one, which will be called
short paths. Instead of cutting the long paths of the cover into shorter paths, we try to match
adjacent vertices of the short paths together. For example, if there exists an edge between
two short paths Pi, Pj ∈ R, then by cutting Pi and Pj in the right way the adjacent vertices
remain as 1-paths and can be merged into a single path (see Figures 1a to 1c). In Figure 1a

Pi

Pj

(a) Minimum path cover with
two 4-paths

(b) Cutting the 4-paths into 3-
paths and 1-paths

(c) Merging the two 1-paths to
a 2-path

FIG. 1: Example for merging two 1-paths. Only the transitive reduction is shown. Simply
cutting the long paths would result in four paths (for b = 3).

a minimum path cover with two 4-paths is shown. By cutting each of them simply into one
3-path and one 1-path, a solution consisting of 4 paths is obtained. To improve on this, the
4-paths can be cut in such a way that the vertices of the two 1-paths are adjacent (see Figure
1b). Afterwards, the 1-paths can be merged into a 2-path, which leaves a solution consisting
of just 3 paths in total (see Figure 1c). There might not be any edges between vertices of short
paths, so it is allowed to use edges that have only one endpoint in a short path. Also, to take
care of a pathological case, it is allowed to cover three short paths with a single triangle (which
results in a 3-path).

The goal is to find a vertex for every short path that can be moved into a 1-path that results
from cutting it into paths of length at most b. Thus, we seek a set of vertex disjoint edges
and triangles such that (i) every short path is covered by at least one edge/triangle, (ii) every
edge contains vertices of different paths and at least one vertex of a short path, (iii) every
triangle contains vertices of three different short paths. Given such a covering, we obtain a
path partition by placing all vertices of the edges into a 2-path, placing all vertices of a triangle
into a 3-path, and cutting the remaining paths into a minimum number of paths of length at
most b. In the worst case, every short path is covered by an edge that ends in a path that has
remainder two, i.e., for every short path that is eliminated, a new short path is created. This
allows us to conclude that there are at most w

2 1-paths in the final solution.
If such a covering does not exist, then there exists a special substructure, which can efficiently

be partitioned in an optimal way. Every time such a substructure is found, the instance can
be reduced and then the algorithm starts over with the remaining graph until a covering of
the vertices is found. After computing a minimum path cover, the main procedure consists
of finding the covering of the paths. Lemma 1 states that this is possible in polynomial
time. As a minimum path cover can be computed in polynomial time and as there are O(n)
iterations in which a substructure can be removed from the graph, the total running time of
the approximation algorithm is also polynomial in the size of the input graph.

Lemma 1 Let G = (V, E) be an undirected graph and let Q ∪ V1 ∪ . . . ∪ Vk be a partition of
V . In polynomial time one can find a certain substructure or determine a set of vertex disjoint
edges and triangles such that

1. at least one vertex in Vi is part of some edge or triangle for all i ∈ {1, . . . , k},

2. every edge covers vertices from two different parts of the partition,

3. every triangle covers vertices from three different parts of the partition.

At last, we state the entire improved approximation algorithm:

1. Compute a minimum path cover P1, . . . , Pw of GS .

2. Determine R :=
{
Pi : |Pi| mod b = 1

}
, and compute a covering of the paths in R by

vertex disjoint edges and triangles.

3. If such a covering does not exist, find the reducible substructure, partition its vertices
optimally, and start over with the reduced graph.

4. Otherwise, place all vertices of the vertex disjoint edges into paths of length two, and all
vertices of the triangles into paths of length three. Finally, cut each remaining path Pi

into
⌈
|Pi|

b

⌉
paths.

Acknowledgements
We are grateful for the constructive comments of two reviewers.

References
[1] F. Bruns, S. Knust, and N. V. Shakhlevich. Complexity results for storage loading problems

with stacking constraints. European Journal of Operational Research, 249(3):1074 – 1081,
2016.

[2] L. S. Moonen and F. C. R. Spieksma. Partitioning a weighted partial order. Journal of
Combinatorial Optimization, 15(4):342–356, 2008.

