On the Complexity of Minimum Maximal Induced Matching

Juhi Chaudhary^{*}, B S Panda[†]

Indian Institute of Technology, New Delhi 110016, India chaudhary.juhi5@gmail.com, bspanda1@gmail.com

Abstract

A subset $M \subseteq E_G$ of edges of a graph $G = (V_G, E_G)$ is called a *matching* if no two edges of M share a common vertex. A matching M in G is called an *induced matching* if G[M], the subgraph of G induced by M, is same as G[V(M)], the subgraph of G induced by the M-saturated vertices of G. MAX-IND-MATCHING is the problem of finding an induced matching of maximum size in a graph. An induced matching M is said to be *maximal* if M is not properly contained in any other induced matching of G. MIN-MAX-IND-MATCHING is the problem of finding a maximal induced matching of minimum size. The decision version of this problem is known to be NP-complete for general graphs as well as bipartite graphs [3]. In this paper, we strengthened this result by showing that this problem remains NP-complete for perfect elimination bipartite graphs and dually chordal graphs. On the positive side, we give a linear time algorithm to compute a maximal induced matching of minimum size in cographs. Finally, we show the complexity difference between MAX-IND-MATCHING and MIN-MAX-IND-MATCHING.

Keywords : Matching, Induced Matching, NP-completeness, Perfect elimination bipartite graphs, Dually chordal graphs, Cographs.

1 Introduction

All graphs considered in this paper are simple, connected, and undirected. Vertices incident to the edges of a matching M are called M-saturated vertices. A matching M in a graph G is called an *induced matching* if G[M], the subgraph of G induced by M, is same as G[V(M)], the subgraph of G induced by the M-saturated vertices of G. An induced matching M is called maximal if it is not contained in any other induced matching of G. MIN-MAX-IND-MATCHING is known to be polynomial time solvable for graph classes like chordal, circulararc, AT-free graphs [3] and linear time solvable for trees [2]. This problem for a random graph has been studied in [1] and shown NP-complete for bi-size matched graphs in [4]. From the approximation point of view, MIN-MAX-IND-MATCHING cannot be approximated within a ratio of $n^{1-\epsilon}$ for any $\epsilon > 0$, unless P = NP [3].

More formally, the decision version of MAX-IND-MATCHING and MIN-MAX-IND-MATCHING are defined as follows:

DECIDE-MAX-IND-MATCHING:

Instance: A graph G = (V, E) and a positive integer k. **Question:** Does there exist an induced matching M in G of size at least k? <u>DECIDE-MIN-MAX-IND-MATCHING:</u> **Instance:** A graph G = (V, E) and a positive integer k. **Question:** Does there exist a maximal induced matching M in G of size at most k?

^{*}The author thanks the Department of Science and Technology (INSPIRE Fellowship) for their support. [†]The author thanks the SERB, Department of Science and Technology for their support.

2 NP-completeness

2.1 Perfect Elimination Bipartite Graphs

An edge e = xy of G = (X, Y, E) is called a *bisimplicial edge* if $N(x) \cup N(y)$ induces a complete bipartite subgraph of G. Let $\sigma = (x_1y_1, x_2y_2, \ldots, x_ky_k)$ be a sequence of pairwise nonadjacent edges of G. Denote $S_j = \{x_1, x_2, \ldots, x_j\} \cup \{y_1, y_2, \ldots, y_j\}$ and let $S_0 = \emptyset$. Then σ is called a *perfect edge elimination ordering* for G if each edge $x_{j+1}y_{j+1}$ is bisimplicial in $G_{j+1} = G[(X \cup Y) \setminus S_j]$ for $j = 0, 1, \ldots, k-1$ and $G_{k+1} = G[(X \cup Y) \setminus S_k]$ has no edge. A graph for which there exists a perfect edge elimination ordering is called a *perfect elimination bipartite graph*.

Theorem 1 DECIDE-MIN-MAX-IND-MATCHING is NP-complete for perfect elimination bipartite graphs.

Proof : Clearly, DECIDE-MIN-MAX-IND-MATCHING is in NP for perfect elimination bipartite graphs. Next, we give a polynomial time reduction from DECIDE-MIN-MAX-IND-MATCHING for bipartite graphs [3]. Given a bipartite graph G = (X, Y, E), where $X = \{x_1, x_2, ..., x_p\}$ and $Y = \{y_1, y_2, ..., y_l\}$, construct a bipartite graph G' = (X', Y', E') in the following way: For each $y_i \in Y$, add a path $P_i = y_i, a_i, b_i, c_i, d_i, e_i$ of length 5. Formally, $X' = X \cup \{a_i, c_i, e_i \mid 1 \le i \le l\}$, $Y' = Y \cup \{b_i, d_i \mid 1 \le i \le l\}$ and $E' = E \cup \{y_i a_i, a_i b_i, b_i c_i, c_i d_i, d_i e_i, \mid 1 \le i \le l\}$. See FIG. 1 for an illustration of the construction of G' from G. It is easy to see that G' is a perfect elimination bipartite graph as $(e_1d_1, e_2d_2, ..., e_ld_l, c_1b_1, c_2b_2, ..., c_lb_l, a_1y_1, a_2y_2, ...a_ly_l)$ is a perfect edge elimination ordering of G'.

FIG. 1: An illustration of the construction of G' from G.

Claim. G has a maximal induced matching of size at most k if and only if G' has a maximal induced matching of size at most k + l.

2.2 Dually Chordal Graphs

A vertex $u \in N_G[v]$ in a graph G is called a maximum neighbor of v if for all $w \in N_G[v]$, $N_G[w] \subseteq N_G[u]$. An ordering $\alpha = (v_1, v_2, \ldots, v_n)$ of V_G is called a maximum neighborhood ordering, if v_i has a maximum neighbor in $G_i = G[\{v_i, \ldots, v_n\}]$ for all $i, 1 \leq i \leq n$. A graph Gis called a *dually chordal graph* if it has a maximum neighborhood ordering.

Theorem 2 DECIDE-MIN-MAX-IND-MATCHING is NP-complete for dually chordal graphs.

Proof: Clearly, DECIDE-MIN-MAX-IND-MATCHING is in NP for dually chordal graphs. Next, we give a polynomial time reduction from DECIDE-MIN-MAX-IND-MATCHING for general graphs. Given a graph G = (V, E), where $V = \{v_1, v_2, ..., v_n\}$, construct a dually chordal graph G' = (V', E') in the following way: Take a vertex v_0 and make v_0 adjacent to all $v_i, 1 \le i \le n$. Also, introduce n vertices $w_i, 1 \le i \le n$ and make v_0 adjacent to all w'_is also. Then take n copies of $n K'_2 s$ namely $p_{ij}q_{ij}, 1 \le i, j \le n$ and for each $1 \le i \le n$ make all $p'_{ij}s$ adjacent to w_i . See FIG. 2 for an illustration of the construction of G' from G. It is easy to see that G' is a

dually chordal graph as $(q_{11}, \ldots, q_{1n}, q_{21}, \ldots, q_{2n}, \ldots, q_{n1}, \ldots, q_{nn}, p_{11}, \ldots, p_{1n}, p_{21}, \ldots, p_{2n}, \ldots, p_{n1}, \ldots, p_{nn}, w_1, w_2, \ldots, w_n, v_1, v_2, \ldots, v_n, v_0)$ is a maximum neighborhood ordering of G'.

FIG. 2: An illustration of the construction of G' from G.

Claim. G has a maximal induced matching of size at most k if and only if G' has a maximal induced matching of size at most k + n.

3 A linear time algorithm for Cographs

A graph G is called a *complement-reducible graph* or a *cograph* if it can be generated from the single-vertex graph K_1 by complementation and disjoint union. It is well known that if a graph G is a cograph, then it is either disconnected or can be written as the join of two cographs G_1 and G_2 .

Lemma 3.1 Let G be a cograph such that it is the join of two cographs G_1 and G_2 and let M be an induced matching in G. Then, either $M \subseteq E_{G_1}$ or $M \subseteq E_{G_2}$ or M consists of exactly one edge between a vertex of G_1 and a vertex of G_2 .

Theorem 3 Let G be a cograph such that it is the join of two cographs G_1 and G_2 . Then $M = \{x_1x_2 \mid x_1 \in V_{G_1}, x_2 \in V_{G_2}\}$ is a maximal induced matching in G. Furthermore, M is also a minimum maximal induced matching in G.

Next corollary immediately follows by Theorem 3.

Corollary 1 The maximal induced matching of minimum size can be computed in O(n + m) time in a cograph.

4 Complexity difference between induced matching and minimum maximal induced matching

In this section, we observe the complexity difference between induced matching and minimum maximal induced matching. We show that DECIDE-MAX-IND-MATCHING is NP-complete for Gx_0 graphs, but DECIDE-MIN-MAX-IND-MATCHING is easily solvable for Gx_0 graphs. Similarly, DECIDE-MIN-MAX-IND-MATCHING is NP-complete for GP_5 graphs, but DECIDE-MAX-IND-MATCHING is easily solvable for GP_5 graphs.

Let $\mu_{in}(G)$ denotes the size of a maximum induced matching in G and $\mu'_{in}(G)$ denotes the size of a minimum size maximal induced matching in G.

Definition 1 (Gx_0 graph). A bipartite graph G' = (X', Y', E') is called a Gx_0 graph if it can be constructed from a bipartite graph G = (X, Y, E) by introducing a new vertex x_0 and making x_0 adjacent to every $y_i \in Y$.

Theorem 4 If G' is a Gx_0 graph, then $\mu'_{in}(G') = 1$.

Proof : Define $M = \{vx_0 \mid v \in V_G\}$.

Lemma 4.1 (see Theorem 2 in [5]) If G' is a Gx_0 graph constructed from a graph G as in Definition 1, then G has an induced matching of size at least k if and only if G' has an induced matching of size at least k.

Since DECIDE-MAX-IND-MATCHING is NP-complete for bipartite graphs, the following theorem follows directly from Lemma 4.1.

Theorem 5 (see Theorem 2 in [5]) DECIDE-MAX-IND-MATCHING is NP-complete for Gx_0 graphs.

Definition 2 (*GP*₅ graph). A bipartite graph G' = (X', Y', E') is called a *GP*₅ graph if it can be constructed from a bipartite graph G = (X, Y, E) by adding a path $P_i = y_i, a_i, b_i, c_i, d_i, e_i$ of length 5 to every $y_i \in Y$. (Note |Y| = l)

Theorem 6 If G' is a GP₅ graph, then $\mu_{in}(G') = 2l$.

Proof: Define $M = \{y_i a_i, d_i e_i \mid 1 \le i \le l\}.$

Lemma 4.2 (see Theorem 1) If G' is a GP_5 graph constructed from a graph G as in Definition 2, then G has a maximal induced matching of size at most k if and only if G' has a maximal induced matching of size at most k + l.

Since DECIDE-MAX-IND-MATCHING is NP-complete for bipartite graphs, the following theorem follows directly from Lemma 4.2.

Theorem 7 (see Theorem 1) DECIDE-MIN-MAX-IND-MATCHING is NP-complete for GP_5 graphs.

5 Conclusion and Open Problems

Exploring the parameterized complexity of the problem will be interesting.

References

- Lane Clark. The strong matching number of a random graph. Australasian Journal of Combinatorics, 24:47-58, 2001.
- [2] V V Lepin. A linear algorithm for computing of a minimum weight maximal induced matching in an edge-weighted tree. Electronic Notes in Discrete Mathematics, 24:111-116, 2006.
- [3] Yury Orlovich, Gerd Finke, Valery Gordon, and Igor Zverovich. Approximability results for the maximum and minimum maximal induced matching problems. Discrete Optimization, 5(3):584-593, 2008.
- [4] Yury L Orlovich and Igor E Zverovich. Maximal induced matchings of minimum/maximum size. Technical report, DIMACS TR 2004-26, 2004.
- [5] Bhawani S Panda and Juhi Chaudhary. Acyclic matching in some subclasses of graphs. In International Workshop on Combinatorial Algorithms, pages 409-421. Springer, 2020.