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Abstract

An edge k- weighting w, w : E(G) → [k] := {1, 2, ..., k}, is a proper vertex coloring
by sums if

∑
e∼u w(e) 6=

∑
e′ ∼v w(e′) for every uv ∈ E(G). The least value of k such

that G has a edge k-weighting which is a proper vertex coloring by sums is denoted by
χe

Σ(G). We focus on the problem of finding vertex coloring 2-edge weighting of bipartite
graphs where we consider the set of edge weights as {1, 2} and {0, 1}. We show that
vertex coloring 2-edge weighting of chain graph can be computed in linear time for both
edge weights {1, 2} and {0, 1}. We also prove that if two graphs have vertex coloring
{1, 2}-edge weightings, then their Cartesian product also has vertex coloring {1, 2}-edge
weighting. Finally, we give some subclasses of bipartite graphs that do not admit vertex
coloring {0, 1}-edge weightings.
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1 Introduction
An edge k-weighting is a function w : E(G)→ [k] := {1, 2, ..., k}. An edge k- weighting w is a
proper vertex coloring by sums if

∑
e∼u w(e) 6=

∑
e′ ∼v w(e′) for every uv ∈ E(G). We denote

the smallest value of k such that a graph G has a edge k-weighting which is a proper vertex
coloring by sums by χe

Σ(G). A graph G is nice if no connected component is isomorphic to K2.
In 2004, Karonski, Luczak and Thomason [3] gave the famous 1-2-3 conjecture.
1-2-3 conjecture If G is nice, then χe

Σ(G) ≤ 3.
The motivation for the 1-2-3 Conjecture comes from the study of graph irregularity strength.

An edge weighting of a graphG is an irregular assignment if, for any pair of vertices u, v ∈ V (G),
the sum of weights of edges incident to u differs from the sum of weights of edges incident to v.
The irregularity strength of a graph G is the smallest value of k such that G has an irregular
assignment from [k].

The best known bound for χe
Σ was obtained in 2010 by Kalkowski, Karonski, Pfender [2]

as χe
Σ ≤ 5 for any nice graph G. In [1], Dudek and Wajc showed that determining whether

a given graph has vertex coloring 2-edge weighting is NP-complete. In [4], Davoodi et al.
studied vertex-coloring edge-weighting of Cartesian product of graphs. Recently, Thomassen
[5] characterized completely the bipartite graphs having an edge-weighting with weights {1, 2}
such that neighboring vertices have distinct weighted degrees. However, the problem is still
open if the edge weights are assigned from {0, 1}.

2 Preliminaries
In this paper, we consider simple and connected graphs. For a graph G = (V,E), the set of
neighbors of a vertex v, {u ∈ V (G) : uv ∈ E(G)}, is denoted by N(v). The degree of a vertex v
is defined as d(v) = |N(v)|. Let n and m denote the number of vertices and number of edges of
a graph G, respectively. A graph G is said to be bipartite if V (G) can be partitioned into two
nonempty disjoint sets X and Y such that every edge of G connects a vertex in X to another



vertex in Y . A bipartite graph G = (X, Y,E) is said to be complete bipartite if every vertex of
X is adjacent to every vertex of Y . A bipartite graph G = (X, Y,E) with |X| = p and |Y | = q,
is called a chain graph if the neighborhoods of the vertices of X form a chain, i.e., the vertices
of X can be linearly ordered, say x1, x2, . . . , xp such that N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(xp).
If G = (X, Y,E) is a chain graph, then the neighborhoods of the vertices of Y also form a
chain. An ordering σ = (x1, x2, . . . , xp, y1, y2, . . . , yq) of X ∪ Y is called a chain ordering if
N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(xp) and N(y1) ⊇ N(y2) ⊇ · · · ⊇ N(yq). It is known that every
chain graph admits a chain ordering that can be computed in linear time. The Cartesian
product of two graphs G and H is the graph G�H with vertices V (G�H) = V (G) × V (H),
and for which (x, u)(y, v) is an edge if x = y and uv ∈ E(H), or xy ∈ E(G) and u = v.

3 Vertex coloring {1, 2}-edge weighting
In this section, we discuss vertex coloring {1, 2}-edge weighting for chain graphs and Cartesian
product of graphs.

3.1 Chain Graphs
In this subsection, first we give a linear time algorithm for finding the vertex coloring {1, 2}-
edge weighting, using at most 3 colors, of a complete bipartite graph, which is a proper subclass
of chain graphs.

Proposition 1 If G is a complete bipartite graph, then the vertex coloring {1, 2}-edge weight-
ing of G can be computed in linear time using at most 3 colors.

Proof : Let G = (X, Y,E) be a complete bipartite graph. It can be easily seen that if
|X| 6= |Y |, then assigning weight 1 to each edge gives vertex coloring {1, 2}-edge weighting
of G using 2 colors, namely, |X| and |Y |. Now suppose |X| = |Y | = r, say. Consider the
following edge weighting w: w(xi, yj) = 2, if (i mod 2 = 0) and w(xi, yj) = 1, otherwise, for
each 1 ≤ j ≤ r. Note that this edge weighting induces a proper vertex coloring by sums since
each vertex of X will be assigned color either r or 2r and the vertices of Y receive color r+

⌊
r
2
⌋
,

where b.c represents the greatest integer function. �
Theorem 1 If G is a chain graph, then the vertex coloring {1, 2}-edge weighting of G can be
computed in linear time.

Proof : Let G = (X, Y,E) be a chain graph. Note that since we have proved the result
for complete bipartite graphs in Proposition 1, we may assume that G is not a complete
bipartite graph. Since G = (X, Y,E) is a chain graph, there exists a chain ordering, σ =
(x1, x2, . . . , xp, y1, y2, . . . , yq) of X ∪ Y such that N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(xp) and N(y1) ⊇
N(y2) ⊇ · · · ⊇ N(yq). Now we consider the following cases:

Case 1 : |X| = |Y | = 2r
Consider the edge weights given by w:

w(xi, yj) =
{

1, if j = 1 and 1 ≤ i ≤ 2r,
2, otherwise.

Since y1 is adjacent to all 2r vertices of X and contribute 1 to each vertex of X, the vertices
of Y receive even colors and the vertices of X receive odd colors.

Case 2 : |X| = |Y | = 2r + 1
Now we further consider different cases depending on the degree of x1.
Subcase (a): d(x1) ≤ r
Consider the edge weights given by w1:

w1(xi, yj) =
{

1, if j = 1 and 2 ≤ i ≤ 2r + 1,
2, otherwise.

Since y1 is adjacent to all 2r + 1 vertices of X and contribute 1 to each vertex of X except
x1, the vertices of Y receive even colors and the vertices of X − {x1} receive odd colors. Note



that x1 always receives an even color but since d(x1) ≤ r, x1 may only be adjacent to vertices
of Y that have the same parity but more value than x1.

Subcase (b): d(x1) ≥ r + 1
Suppose d(x1) = r + 1. This implies that {y1, . . . , yr+1} are adjacent to each vertex of X.

Consider the edge weights given by w2:

w2(xi, yj) =
{

2, if 1 ≤ j ≤ (r + 1) and 1 ≤ i ≤ 2r + 1,
1, otherwise.

Note that {y1, . . . , yr+1} receive color 2(2r + 1) and {yr+2, . . . , y2r+1} receive color at most
2r+ 1. Since the vertices of X receive color at least 2(r+ 1), w2 is a proper vertex coloring by
sums. A similar argument holds for d(x1) > r + 1.

Case 3 : If the number of vertices in one of the sets, X or Y , is even.
Suppose |X| = 2l, for some positive integer l. Since y1 is adjacent to all 2l vertices of X, the

following edge weighting given by w result in odd colors for the vertices of X and even colors
for the vertices of Y :

w(xi, yj) =
{

1, if j = 1 and 1 ≤ i ≤ 2l,
2, otherwise.

Similarly, if |Y | = 2l, then assign weight 1 to all the vertices adjacent to xp and weight 2 to
the other edges to obtain vertex coloring by sums.

Case 4 : If |X| = 2r + 1 and |Y | = 2l + 1, (l 6= r).
Let us assume, without loss of generality, that r > l.
Consider the edge weights given by w:

w(xi, yj) =
{

1, if i = 2r + 1 and 2 ≤ j ≤ 2l + 1,
2, otherwise.

Note that all the vertices of Y except y1 receive an odd color and each vertex of X receive
an even color. Since y1 is adjacent to each vertex of X and recieves 2 from each edge, y1 gets
color 2(2r+ 1). Now any vertex of X receives color at most 2(2l+ 1) which is strictly less than
the color of y1 as r > l.

This completes the proof of the theorem. �

3.2 Cartesian product of graphs
In this subsection, we show that the Cartesian product of graphs G and H, G�H has a vertex
coloring {1, 2}-edge weighting if both G and H have vertex coloring {1, 2}-edge weightings.

Theorem 2 Let G and H be graphs that have vertex coloring {1, 2}-edge weighting, then G�H
has vertex coloring {1, 2}-edge weighting that can be computed in linear time.

Proof : Let wG and wH be vertex coloring {1, 2}-edge weightings of G and H, respectively.
We define w, vertex coloring {1, 2}-edge weighting of G�H for each edge (x, u)(y, v) as follows:

w((x, u)(y, v)) =
{
wH(uv), if x = y and uv ∈ E(H),
wG(xy), if xy ∈ E(G) and u = v.

Note that same weight is added to each vertex of each copy of G from the new edges of H
and vice versa. Suppose w is not a proper coloring by sums. This implies that there exists
an edge (x, u)(y, v) ∈ E(G�H) such that its endpoints have same color. Suppose x = y and
uv ∈ E(H). Since x = y, the total weights added to (x, u) and (y, u) due to the edges in G
are the same. But that would imply that the total weights contributed by the edges in H to
u and v are same, this is a contradiction to wH being a vertex coloring {1, 2}-edge weightings
of H. Thus, w is a vertex coloring {1, 2}-edge weighting of G�H.

�

4 Vertex coloring {0, 1}-edge weighting
In this section, we discuss vertex coloring {0, 1}-edge weighting of chain graphs and present
some subgraphs of bipartite graphs that never admit vertex coloring {0, 1}-edge weighting.



FIG. 1: Graph formed by adding 5 distinct P3 added to each vertex of K2.

4.1 Chain graph
In this subsection, we show that vertex coloring {0, 1}-edge weighting using 3 colors of chain
graph can be determined in linear time.

Theorem 3 If G is a chain graph, then the vertex coloring {0, 1}-edge weighting of G can be
computed in linear time using 3 colors.

Proof : Let G = (X, Y,E) be a chain graph. Then there exists a chain ordering of G,
σ = (x1, x2, . . . , xp, y1, y2, . . . , yq) of X ∪Y such that N(x1) ⊆ N(x2) ⊆ . . . N(xp) and N(y1) ⊇
N(y2) ⊇ . . . N(yq). Note that if G is a star graph with more than 1 non pendant vertices, then
assigning weight 1 to any two edges gives a vertex coloring {0, 1}-edge weighting of G using
3 colors. Without loss of generality, we assume that |Y | ≥ |X| and G is not a star graph.
Consider the edge weights given by w:

w(xi, yj) =
{

1, if i = p and 1 ≤ j ≤ q,
0, otherwise.

Note that all the vertices of Y are adjacent to xp and w assigns color 1 to each vertex of Y .
Each vertex of X except xp receive color 0 and xp receives color |Y |. �
Proposition 2 If G = (X, Y,E) is a bipartite graph with either x ∈ X satisfying d(x) = |Y |
or y ∈ Y satisfying d(y) = |X|, then applying the above weighting on x or y, respectively,
instead of xp results in a vertex coloring {0, 1}-edge weighting of G using at most 3 colors.

4.2 Some subclasses of bipartite graphs that do not admit vertex coloring
{0, 1}-edge weighting

In this subsection, we give some subclasses of bipartite graphs that do not admit vertex coloring
{0, 1}-edge weighting.

1. C4r+2 and P4r+2, r ≥ 1.

2. Graphs formed by adding r distinct P3 to each vertex of K2. (See Figure 1.)

3. Graphs formed by adding C4r+2 to each end vertex of P4r+3.
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