
A Simplicial Decomposition - Branch and Price for convex
quadratic mixed binary problems

Enrico Bettiol1, Lucas Létocart2, Francesco Rinaldi3, and Emiliano Traversi4
1 Fakultät für Mathematik, TU Dortmund, Vogelpothsweg 87, Dortmund, Germany

enrico.bettiol@math.tu-dortmund.de
2 LIPN UMR CNRS 7030 Université Paris 13, Sorbonne Paris Cité, 99, avenue Jean-Baptiste

Clément, 93430 Villetaneuse, France
lucas.letocart@lipn.univ-paris13.fr

3 Università di Padova, Dipartimento di Matematica, Via Trieste, 63, 35121 Padova, Italy
rinaldi@math.unipd.it

4 LIPN UMR CNRS 7030 Université Paris 13, Sorbonne Paris Cité, 99, avenue Jean-Baptiste
Clément, 93430 Villetaneuse, France

emiliano.traversi@lipn.univ-paris13.fr

Abstract

Simplicial Decomposition (SD) is a column generation method which can be useful
for convex quadratic problems. In this work we show that this method can be efficiently
exploited to solve quadratic convex mixed binary problems, with linear constraints. We
propose a Branch-and-Price algorithm, in which at each node we adapt a SD - based
algorithm. This allows to efficiently reuse the variables generated in one node of the
Branch-and-bound tree in its child nodes, providing a speed-up in the overall computing
time. We also analyze the interaction of additional techniques for speeding up the overall
framework. We provide computational results, which show the efficiency of the proposed
method for Quadratic Shortest Path Problems, when compared to the commercial solver
Cplex. We also provide some preliminary results for the Quadratic Minimum Spanning
Tree Problem.

Keywords : Convex Quadratic Programming, Mixed Binary Quadratic Optimization, Simpli-
cial Decomposition, Column Generation, Branch-and-Bound.

1 Introduction

Many real-world applications can be modelled as Mixed Binary Quadratic Problems (MBQPs):
this means the optimization of a quadratic objective function subject to linear or quadratic
constraints, where all or a part of the variables must be binary numbers, i.e. 0 or 1. We
consider general mixed binary problems with quadratic objective function, subject to linear
constraints. The form of these problems is the following:

min f(x) = x>Qx + c>x (1)
s. t. Ax ≥ b,

Cx = d,

l ≤x ≤ u

xi ∈ {0, 1} ∀i ∈ I ⊆ {1, . . . , n}

with Q ∈ Rn×n, c, l, u ∈ Rn, A ∈ Rm1×n, b ∈ Rm1 , C ∈ Rm2×n, d ∈ Rm2 , n, m1, m2 ∈ N.



We focus on convex problems, so we assume that the Hessian matrix Q is positive semidefi-
nite. Moreover, we assume that X = {x ∈ Rn : Ax ≥ b, Cx = d, l ≤ x ≤ u} is non-empty
and bounded.

Furthermore, among all possible problems of type (1), we are particularly interested in those
in which the matrix Q is dense and with the following additional property: there exists an
efficient method for minimizing a linear function over the feasible set X, i.e., there exists an
efficient linear minimization oracle that for a given y ∈ Rn solves the problem:

min
x∈X

y>x.

The class of these problems is NP-Hard and we present an algorithm to solve them. It is
based on the classic Branch and Bound (B&B) method, but integrates it with a Simplicial
Decomposition (SD) type approach, to solve the continuous relaxation of the mixed binary
problem. Indeed, in [1] it is showed that SD is specifically tailored to solve the continuous
relaxation of problems with the aforementioned features. However, it is worth noting that the
proposed algorithm can handle any convex problem of type (1) and can be easily modified in
order to deal with mixed integer problems and also problems having a general convex objective
function. Within this framework we obtain promising results compared with the state-of-the-
art solver Cplex on some sets of instances.

2 Simplicial Decomposition (SD)

Simplicial Decomposition (SD) can be seen as an application of the Dantzig - Wolfe decom-
position method [2]. The idea behind it is described in [3, 4]: in order to solve the original
continuous problem, it is decomposed into simpler ones, which are called respectively pricing
and master programs, and are solved alternatively and repeatedly. The pricing solves the orig-
inal problem with a linear objective function and the master program, instead, is a problem
with the original objective function, but with lower dimension and simplified constraints. More
precisely, given a set of extreme points of the domain, the master solves the original problem in
the convex hull of them and the pricing linearizes the objective function in the optimal point
of the master, to get a new extreme point; this cycle is repeated until the optimum of the
original problem is found. In this way, the problem is solved with an inner approximation of
its domain.

3 SD integrated in a Branch and Bound

In our B&B algorithm, at each node we solve the continuous relaxation with SD; in particular,
to solve the master problems we use the ACDM algorithm proposed in [1], which is the most
efficient in this case. Embedding the SD algorithm in this structure is useful for several reasons.
The first one is that this algorithm has a good performance in terms of computational time
with respect to Cplex, so it can improve the performance in solving each node. Then, since
the extreme points given by a SD algorithm are always feasible, if they are also binary every
node of the B&B is feasible; moreover, we can store information at each node to simplify the
computations of the following nodes, as described in the next paragraphs.

Dual bound The pricing problem of SD, at each cycle, gives a valid lower bound on the
solution: indeed, it solves a linear underestimator of the original objective function. Alterna-
tively, it can be seen as the dual bound given by the Dantzig-Wolfe decomposition method.
Such a lower bound can be exploited for pruning the nodes and it actually gives remarkable
improvements. Hence, if the node can be pruned, performing the complete column generation
algorithm is generally not needed, and most of the times only very few iterations are sufficient.



Column exploitation Another useful enhancement of the SD algorithm is that many columns
generated at each node can be reused in the children nodes, if they satisfy the constraints given
by the branching. Indeed, when at a given node a fractional solution is found for the contin-
uous relaxation, and branching to a variable - say i - is performed, all the columns with ith

component equal to 1 or to 0 can be stored for the left and right child nodes. In this way, we
can have an initial set of extreme columns for every node of the B&B tree. In particular, if the
columns are binary, all the columns generated at every node are reused in the children nodes.
This makes us able to warmstart the SD algorithm at every node. Results which evidence the
reduction of computational time are presented later.

Branching strategy, branching rules The branching strategy that has been used is the
depth first search: at each branching, the left child is the next node to explore. The advantages
of this choice are the following:

• the number of open nodes is kept small: indeed, at any step of the algorithm, at most
n + 1 nodes are opened, and this is the least possible;

• combined with SD, it allows to find rapidly both upper and lower bounds;

• it allows to efficiently reuse columns previously generated.

We choose the following branching rule: at each branching, we fix to 1 the variable with the
largest fractional part. This choice generally allows us to keep several columns feasible in the
left child node. Moreover, since the solutions of our problems are often sparse, this choice also
allows us to find rapidly a good upper bound.

4 Computational results
We give a description of the computational results obtained with the SD based algorithm
we presented in the previous sections. In our tests we consider instances of combinatorial
problems. In particular, we focus on quadratic shortest path (QSP) problem and quadratic
minimum spanning tree (QMST) problem.

Regarding the QSP problem, we use two types of instance: Quadratic Grid Shortest Path
(QGSP) problem, that is graphs represented by a squared grid, and Quadratic Random Shortest
Path (QRSP) problem, that is randomly generated graphs. The benchmark consists of 12
QGSP instances (with 180 to 420 variables, and 100 to 225 constraints) and 66 QRSP instances
(1000, 3000 or 5000 variables, 100 to 300 constraints).

We also provide some preliminary results for the QMST problem, obtained on graphs with a
grid structure. We have a benchmark of 18 instances, with 40 to 84 edges and 25 to 49 nodes.

4.1 Numerical results
In Table 1, average results are shown for the quadratic shortest path problem, for the grid
and the randomly generated graphs. We compare the results of Cplex, with the results of
our algorithm. We show the difference between reusing the columns in the children nodes or
not. We show, on average, the CPU time (in seconds) to solve the instances for Cplex, and
for our algorithm, without storing columns in the nodes (BBSD) or with the column reuse
(BBSD+col), respectively; the number of B&B nodes of Cplex and of our algorithm; and the
number of columns generated by our algorithm, in the two settings.

We observe that all the algorithms solve every instance to optimality, within the imposed
timelimit of three hours. These results show that the computational time of the proposed
algorithm is always better than that of the state-of-the-art software Cplex. Our algorithm
generates on average more nodes than Cplex : since the overall time is shorter, it means that
SD solves every node faster. It can be noticed that the reuse of columns from a node to the
children is effective: while the number of nodes is almost unchanged, reusing columns allows to



Type Time (s) # nodes # columns

Cplex SDBB SDBB+col Cplex SDBB SDBB+col SDBB SDBB+col

QGSP 811.0 735.6 472.7 155005 267773 267641 2482845 1645443
QRSP 75.0 41.7 13.2 47.7 829.4 829.5 9173.7 2372.2

TAB. 1: Quadratic Shortest Path Problem.

save a considerable percentage of the CPU time, mainly due to the smaller number of iterations
which are needed to be computed.

In Table 2 we present some preliminary results for the QMST problem. We show the number
of vertices and edges, the computational time without storing the columns and with their reuse,
and the average number of columns which are generated in the whole B&B tree.

Vertices Edges Time (s) # nodes # columns

SDBB SDBB+col SDBB SDBB+col SDBB SDBB+col

25 40 0.27 0.15 1557 1553 13080 6523
36 60 54.35 33.48 190663 189746 1871141 1031868
49 84 5128.80 3276.50 9330521 9276077 124934508 69266606

TAB. 2: Quadratic Minimum Spanning Tree Problem.

We can see that, also in this case, the column exploitation is useful, since it allows to reduce
the number of SD iterations and hence the overall computational time.

5 Conclusions
We presented an efficient combination of the SD framework with a branch and bound scheme,
to solve mixed binary convex quadratic problems. It embeds in its structure the ad-hoc method
for solving the master problem. It exploits all the advantages of the SD algorithm, as the lower
(or dual) bound and the warmstart given by the structure of the simplices in an efficient way.
We showed, through a numerical experience, that our algorithm performs better than Cplex
when dealing with instances of Quadratic Shortest Path problems with a dense Hessian matrix.
We also provided results for the Quadratic Minimum Spanning Tree problem. In conclusion, we
showed that the SD algorithm, originally designed for continuous problems, can be profitably
embedded in a framework for mixed binary quadratic problems.

References
[1] Enrico Bettiol, Lucas Létocart, Francesco Rinaldi, and Emiliano Traversi. A conjugate

direction based simplicial decomposition framework for solving a specific class of dense
convex quadratic programs. Computational Optimization and Applications, pages 1–40,
2019.

[2] George B Dantzig and Philip Wolfe. Decomposition principle for linear programs. Opera-
tions research, 8(1):101–111, 1960.

[3] Charles A Holloway. An extension of the frank and wolfe method of feasible directions.
Mathematical Programming, 6(1):14–27, 1974.

[4] Balder Von Hohenbalken. Simplicial decomposition in nonlinear programming algorithms.
Mathematical Programming, 13(1):49–68, 1977.


