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Abstract

We investigate a multiperiod drayage problem in which customers can request trans-
portation services over several days and the carrier has some flexibility to change service
periods. We discuss and compare three approaches for the problem: a path-based model
with all feasible routes, a Price-and-Branch algorithm in which the pricing is formulated
as a collection of shortest path problems in a cunningly constructed acyclic network, and
a compact arc-flow formulation based on this network.

Keywords : Combinatorial Optimization, Graphs, Price-and-Branch, Reformulations.

1 Introduction
Although drayage operations represent a small fraction of the total distance of an intermodal
shipment, they account for a relevant share of the overall shipping costs. As a result, they
have been subject to a significant amount of research. However, it has typically focused on
single-day problems and, thus, has not offered proper tools to evaluate the impact of flexibility
on distribution costs. When customers accept to be served over different days and the storage
space in port terminals (and in their close depots) is sufficient, one is requested to jointly plan
when customers should be served and which routes should be made to minimize costs.

In this problem, two types of customers must be served: importers receiving container loads
from port and exporters shipping container loads to the same port. Routes are performed
by two types of trucks, which are based at the port and carry one or two containers at a
time. Two-container trucks have slightly larger routing costs per unitary distance as opposed
to one-container-trucks, but they can serve twice the demand. Each transportation request
specifies where customers are located, how many container loads must be delivered or col-
lected, and when they can be served so that all drayage operations are completed within the
planning horizon. Customers can have different flexibility levels regarding their availability to
receive a transportation request before or after the specified due-date. A customer without
flexibility only accept to receive services at the specified due-date for each. For more flexible
customers, the carrier pays customer-specific penalties for earlier/later than desired services
within customer-specific flexibility periods, and there exists a customer-specific capacity on the
maximum number of container loads that can be served early or late during flexibility periods.
Furthermore, there exist a global capacity and a cost associated with containers left at the
port for late delivery and early collection with respect to the desired service date.

We will discuss three different approaches to this problem. First, since up to four customers
can be visited along each route in each period, a natural model enumerates all the (polynomially
many) feasible routes in a period-dependent network, where nodes represent the port and
customers and arcs indicate the possible connections among them. The resulting path-based



formulation is solved with all feasible routes by an off-the-shelf MIP solver. Second, since the
number of routes may be too large, the Linear Programming relaxation of this formulation is
solved by Column Generation, where the pricing subproblem is a collection of acyclic shortest
path problems on appropriate auxiliary networks. From the set of generated columns, an
integer solution is sought by a MIP solver under the Price-and-Branch paradigm. Third, a arc-
flow formulation based on a slight modification of the previous auxiliary network is proposed
and solved very effectively by a general-purpose MIP solver.

2 First approach: the path-based formulation
Consider a set H periods in the planning horizon. Let G = (N,A) be the physical directed
graph, in which N = {p} ∪ I ∪ E (i.e. nodes) represent the port p and all possible customers
V = I ∪ E, in which I and E are the set of importers and exporters, respectively. Any arc
(i, j) ∈ A represents the direct truck trip between i and j, and has the two associated costs
for one- and two-containers trucks, respectively. It is immediate to construct the (physical)
sub-graphs Gt

h = (Nh, A
t
h) of G for each period h ∈ H and type of truck t ∈ T = { 1 , 2 },

in which Nh = {p} ∪ Vh, Vh = Ih ∪ Eh, Ih and Eh denote the set of importers and exporters
who accept to be served in period h ∈ H, respectively. The arc sets At

h are those induced by
Nh and must be feasible for the given truck type: since the demand of customers is in terms
of container loads, two-container trucks (t = 2) can in principle move between any pair of
customers, whereas one-container trucks (t = 1) can only go—besides from the port directly
to a customer and back—from an importer to an exporter, but not vice-versa.

Following [1], path-based formulations are attractive, because, due to the restriction on
the set of possible loading/unloading patterns, a truck cannot visit “many” nodes. Also, the
continuous relaxation of the corresponding formulations is known to usually provide much
stronger lower bounds. This only requires defining the set R(h)t of all feasible routes for
trucks of type t in period h. These are, on the outset, simple directed cycles in Gt

h starting
and ending in p and visiting not more than t importers and exporters in the right order.
Yet, it has to be remarked that, while visiting a given importer/exporter, a two-containers
truck possibly has a choice, in that it can leave/collect either one container load or two. Of
course, if it leaves/collects two, then this must be the only importer/exporter that is visited
in the route. This information may be imagined encoded in the graph, and therefore in the
routes, by allowing self-loops (i, i) among the arcs; each entry in a node (even from a self-loop)
corresponds to the delivery/collection of a container load.

Constructing a the path-based formulation (PBF ) is now immediate. For each route r ∈
R(h), let αv,r be the coefficient which takes value 2 if customer v ∈ N \ {p} is served by
two container loads carried by a single (two-container) truck doing route r ∈ R (then, clearly
r ∈ R(h)2 for some h), 1 if v is served by one container, and 0 if v is not visited in route
r. An integer decision variable represents the number of times in which route r is traversed.
Moreover, ‘slacks” sh+

v and sh−
v are introduced to model the amount of container loads that,

respectively, have not been delivered/collected on time or have been delivered/retrieved earlier
than agreed for customer v ∈ V in day h ∈ H.

Routing costs and penalties for customers are minimized in the objective function. Con-
straints ensure that routes serve the overall demand customers, but it is possible to de-
liver/collect container loads to/from the customers either earlier or later than the expected
date. Moreover, the number of routes performed in each period is lower than the number of
available trucks for each type. Constraints enforce the maximum number of container loads
that can be delivered/collected early or late to/from the customers and kept in the port.

3 Second approach: the Price-and-Branch algorithm
For a relatively small number of customers, it is possible to just statically enumerate all possible
routes. However, when the number of customers grow, the number of feasible routes quickly



becomes rather large. In this case, the LP relaxation (PBF ) of (PBF ) can be solved by
the well-known column generation technique. This starts by forming the Restricted Master
Problem (RMP ), which is (PBF ) where the full set of routes R is replaced by a (much)
smaller subset R ⊂ R.

The key of the approach is that the dual of (PBF ) has constraints corresponding to each
r ∈ R, as opposed to only those for r ∈ R that are present in the dual of (RMP ). Hence, one
only have to prove that all the constraints corresponding to each r ∈ R are satisfied by the
current dual solution, which proves the optimality for the whole (PBF ) of the corresponding
optimal primal solution of (RMP ), or find any route r̄ whose constraint is violated, which can
then be added to R for the process to be iterated. The crucial step is therefore to find a route
r̄ that violates the constraint. This can be restated as the fact that the reduced cost of r̄ is
negative. The fundamental observation is that, discarding a constant term, the reduced cost
of r̄ can be computed as the sum of the reduced costs of the arcs of the cycle (comprised the
self-loops). Thus, determining a route of negative reduced cost can be reduced to a collection
of Shortest Path Problems (SPP) on tailor-made acyclic networks Ḡt

h = (N̄ t
h, Ā

t
h), one for each

t ∈ T and h ∈ H. The topology of these graphs is readily obtained by that of the corresponding
(physical) sub-graphs Gt

h = (Nh, A
t
h) by cleverly “‘unrolling the self-loops”, when permitted,

for at most one time each.
More precisely, for t = 1, the port is split into two nodes p′ and p′′ while each customer

(importer or exporter) v ∈ Vh is modeled by one node exactly like in Nh. The arcs in Ā1
h

represent possible trips performed by one-container trucks, i.e., they are basically those of A1
h

save that arcs leaving p now leave p′ and arcs entering p now enter p′′. For t = 2, not only the
port is again split into two nodes p′ and p′′; also each customer (importer or exporter) v ∈ Vh

is modeled by two distinct nodes v′ and v′′, each associated with a container used to serve this
customer. This means that, basically, the original node set Vh = Ih ∪Eh is replicated twice as
two distinct sets V ′h = I ′h ∪ E′h and V ′′h = I ′′h ∪ E′′h. The construction of the arcs then has to
follow from the actual operating rules of the carrier. An important property of Ḡt

h is that is
acyclic. This allows both to use efficient acyclic SPP algorithms to solve the pricing problem,
and especially to be guaranteed that no negative cost cycle can ever form.

With the ability of efficiently solving the pricing problem(s) for (PBF ), it is almost imme-
diate to implement the column generation approach and solve it expeditiously, even as the
number of customers grows significantly. While this ultimately provides the same bound as
solving it in one blow and this bound is usually quite good, it does not in general provide
any integer feasible solution. However, the set of routes generated during the approach can
be reasonably expected to contain “good” ones that can therefore be used to construct “good”
integer solutions. This immediately suggests a Price-and-Branch (P&B) approach: simply,
pass the final set of routes R of (RMP ) to a general-purpose MILP solver and just solve the
corresponding (small-ish) program to integer optimality. The P&B is expected to be quite
effective and efficient when the root node gap of the formulation is low.

4 Third approach: a compact formulation

A different possibility exists for exploiting the results of the previous paragraph in order to
produce a “compact” formulation that shares the same strong bound as the (PBF ) one. The
idea is, on the outset, simple: the pricing problem of the column generation approach, being
a SPP, has a compact (flow-based) formulation. Basically, all that is needed is to use this to
construct a formulation to the entire problem. This formulation is called (SEAF ).

To do that, it is only necessary to minimally expand the former acyclic networks Ḡt
h by

adding the single “return arc” (p′′, p′). Owing to the presence of multiple networks Ḡt
h, one for

each t ∈ T and h ∈ H, the formulation is, basically, an integer Multicommodity Flow problem.
For each arc (i, j) ∈ Āt

h, we define the integer arc-flow variable xth
ij denoting the number of

trucks of type t doing that particular leg (comprised the “no-travel arcs” (v′, v′′) for some
customer v ∈ Vh at time period h) and we keep using "slacks" variables as in (PBF ).



Routing costs and penalties for customers are minimized in the objective function. Con-
straints ensure that routes serve the overall demand customers, but it is possible to de-
liver/collect container loads to/from the customers either earlier or later than the expected
date. Moreover, the number of routes performed in each period is lower than the number of
available trucks for each type. Constraints also enforce the maximum number of container
loads that can be delivered/collected early or late to/from the customers and kept in the port.

We will show that its continuous relaxation, which we denote by (SEAF ), provides the
same lower bound as (PBF ) by a Lagrangian relaxation. By giving names to the Lagrangian
multipliers equal to that of dual variables in (DRMP ), we will show that the structure of the
Lagrangian costs is precisely the same as that of the reduced costs of the previous section.

Since the bound is the same, the two formulations have basically to be compared on the effi-
ciency of the solution methods for the continuous relaxation. The main advantage of (SEAF )
is that it is a “more compact” formulation, in that its size grows about quadratically in the
number of customers rather than quartically. This means that the formulation can be passed
whole to a general-purpose solver even for large instances. On the other hand, (PBF ) can be
solved by column generation, which means that the final number of routes in R can potentially
be (much) smaller than the size of the whole (SEAF ); yet, these have to be incrementally gen-
erated by repeatedly solving the master problem and the subproblems. A definite advantage
of (SEAF ), however, is that very few general-purpose solvers support the full-fledged B&P
approach. Thus, using (PBF ) implies either to significantly restrict the choice of the solution
tools, or to resort to heuristics like the P&B, on top of requiring the implementation of the
pricing problem, whereas using (SEAF ) is significantly simpler with a much larger variety of
available tools.

5 Conclusion
Extensive experiments have shown that the third approach is by far the most effective, as it
can determine very quickly optimal solutions by just running a general-purpose, off-the-shelf
MILP on standard hardware. Unless for the largest, and possibly unrealistic, instances we
tested, the optimal solution is often found at the root node by strengthening the bound via
standard polyhedral techniques; this is a testament of the very good quality of the initial bound
that the new formulation provides while requiring a much smaller number of variables than
the previous ones.

The proposed (re)formulation makes it possible to efficiently solve even large instances.
In turn, this allows to perform experiments in order to quantify the savings that can be
obtained by convincing customers to take a more flexible stance about service times. From a
managerial viewpoint, these outcomes can be useful to negotiate price discounts in exchange
for the extended flexibility.
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