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Abstract
In this paper we investigate a new challenging variant of the classical Travelling Sales-

man Problem where the set of nodes is divided into clusters and a different color is
associated with each cluster. The goal is to find a Minimum Cost Hamiltonian Cycle sat-
isfying different separation constraints between nodes with the same color. We present a
new effective mathematical formulation for the problem. Since it involves an exponential
number of constraints we devise separations procedures to be used within a Branch-and-
Cut framework. Promising preliminary results are obtained on a set of random instances.
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1 Problem Description
The Traveling Salesman Problem (TSP) does not require any introduction. It is, indeed, one
of the most studied and influential problem in combinatorial optimization literature. There
are thousands of papers and books eviscerating every aspect of the problem [1] and many
different variants of the TSP with diverse objectives and requirements have been investigated
in the literature [5]. In this paper we tackle a new challenging variant of the TSP called the
Multi-color Traveling Salesman Problem (MCTSP).

The MCTSP is defined starting from an undirected graph G = (V,E) and a set of colors C.
The set of nodes V is partitioned in h clusters of nodes C1, C2, . . . Ch. Each cluster contains
only nodes of the same color and for each color h ∈ C two values αh and βh are given. The value
αh represents the minimum number of nodes not belonging to cluster Ch that must separate
any pair of nodes of color h. While βh is the maximum number of nodes not in Ch that can
separate two consecutive nodes of color h. Finally, a cost ce proportional to the length of the
edges is associated with each edge e ∈ E.

We define the Multi-color Travelling Salesman Tour as a Hamiltonian tour such that each
pair of consecutive nodes belonging to the same cluster Ch is separated by at least αh nodes
and by at most βh nodes not belonging to cluster Ch (see Figure 1 for an example). The
MCTSP requires to find the Multi-color Travelling Salesman Tour of minimal cost.

The MCTSP is an NP-hard problem since the TSP is polynomially reducible to MCTSP.
Indeed, a TSP instance can be turned into a MCTSP instance by associating a different color
h to each node and setting αh = βh = 1 for all nodes.

In the remainder of this paper we present a Mixed Integer Linear Programming model for
this problem, we describe a branch-and-cut procedure to solve it and we report preliminary
results obtained on a set of random instances.

2 Mathematical Formulation
The model that we propose for the MCTSP requires the definition of only one set of binary
variables: xe ∀e ∈ E. They are equal to 1 if the edge e is used in the tour and are 0 otherwise.



FIG. 1: Multi-color Travelling Salesman Tour

In the model we extensively use the notation X(S : T ), with S ⊆ V and T ⊆ V , to identify
the set of variables corresponding to edges with an endpoint in S and the other endpoint in
T . Therefore, our mathematical formulation for the MCTSP reads as follows:

max
∑
e∈E

cexe (1)

s.t. x({i} : V \ {i}) = 2 ∀i ∈ V (2)
x(S : V \ S) ≥ 2 ∀S ⊂ V (3)
x(S : S) + x(S : Ch) ≤ |S| ∀h ∈ C, S ⊂ V \ Ch : |S| < αh (4)

x(S : V \ S) ≥ 2 |S|
βh

∀h ∈ C, S ⊂ V \ Ch (5)

xe ∈ {0, 1} ∀e ∈ E (6)

The objective function (1) calls for the minimization of the total costs. Equalities (2) rep-
resents degree constraints stating that each node must be connected with two other nodes.
Inequalities (3) are standard sub-tour elimination constraints. The requirement on the min-
imum number of nodes between two nodes of the same color is enforced by constraints (4).
It states that, for each color h and for each subset of nodes S ⊂ V \ Ch : |S| < αh, either
S represents a chain in the tour connected with Ch by at most one arc or S is not a chain.
Finally, the maximum distance between two nodes of the same color is limited by inequalities
(5). These constraints are satisfied if, for each color h and for each subset of nodes S ⊂ V \Ch,
either S is a chain not longer than βh or S is not a chain.

3 Branch-and-Cut
Formulation (1- 6) includes an exponential number of constraints, in particular constraints
(3), (4) and (5) and it cannot be directly solved using standard MIP solvers such as CPLEX,
GUROBI, etc. For this reason we propose a branch-and-cut procedure to efficiently address
the exponential number of constraints and to achieve proved optimal solutions for MCTSP.

Following a classical branch-and-cut paradigm we start considering a linear program (LP)
including only the objective function (1), constraints (2), all sub-tour elimination constraints
(3) with |S| = 2 and all constraints (4) with |S| ≤ 2. At each iteration, we solve the current
LP, we look for constraints (3), (4) or (5) that are violated by the optimal LP solution and we
add them to the current LP. This procedure stops when no violated constraints are identified.
If the solution found is not integer we branch and we repeat the procedure.

In order to find violated constraints we run three different separation procedures, one for each
family of constraints (3), (4) and (5). Given the optimal solution x̄ of LP for the separation



of sub-tour elimination constraints (3) we relied on the well known max-flow-min-cut based
procedure presented in the literature (see for instance [3]).

Constraints (4) can be interpreted as Enhanced Reverse Multistar inequalities rewriting
them in the following way:

αhx(Ch : S) ≤ (αh − 2)x(S : V \ (S ∪ Ch)) + 2|S| ∀h ∈ C, S ⊂ V \ Ch : |S| < αh

Then, violated constraints can be found using the polynomial time algorithm presented in [4].
Finally, for the separation of constraints (5) a max-flow-min-cut procedure using modified

graphs can be employed. In detail, for each color h ∈ C the modified graph is composed by all
nodes in V \Ch plus a super-node obtained by merging all nodes in Ch. Edges between nodes
in Ch are ignored while the capacity associated with the other edges e ∈ E is equal to x̄e. On
these graphs we compute the max-flow-min-cut from any node to the super-node. A violated
inequality is found if the flow is lower than 2 |S|

β where S is the set of nodes not including Ch
identified by the min-cut procedure.

TAB. 1: Preliminary Results
|V | |C| α β GR% TR GF% TF BBNode Cut (3) Cut (4) Cut (5) Opt

10 3 2.00 3.00 0.00 0.02 0.00 0.02 0.00 4.00 0.00 0.00 4
10 4 2.38 5.13 0.00 0.03 0.00 0.04 0.00 7.00 0.00 5.00 4
10 5 6.00 7.00 0.00 0.05 0.00 0.07 0.00 4.75 0.00 6.25 4
10 6 6.00 7.13 1.80 0.09 0.00 0.12 8.50 16.25 2.50 20.00 4
10 7 6.13 7.50 0.49 0.07 0.00 0.09 2.25 13.25 0.50 9.25 4
10 8 6.25 8.00 0.00 0.04 0.00 0.04 0.00 6.25 0.25 6.25 4
20 3 2.00 3.00 0.00 0.02 0.00 0.03 0.00 4.25 0.00 0.00 4
20 4 2.00 6.00 1.45 0.18 0.00 0.23 41.25 44.25 0.00 36.25 4
20 5 2.25 9.50 0.45 0.14 0.00 0.20 49.75 55.75 0.00 56.25 4
20 6 3.63 10.50 0.75 0.22 0.00 0.29 19.50 71.50 7.25 72.00 4
20 7 5.38 12.00 1.74 0.22 0.00 0.48 426.75 154.50 51.00 119.50 4
20 8 7.00 12.25 4.16 0.24 0.00 0.90 760.00 299.75 199.00 255.00 4
50 3 2.00 3.00 0.00 0.07 0.00 0.07 0.00 13.00 0.00 0.00 4
50 4 2.00 7.75 0.00 0.48 0.00 0.49 0.00 57.50 0.00 10.00 4
50 5 2.00 10.50 2.49 1.05 0.00 16.58 2276.75 618.75 0.00 403.25 4
50 6 2.38 15.25 8.86 1.25 2.05 2692.94 75453.00 13757.75 20.75 14404.00 3
50 7 3.00 16.75 7.72 1.15 1.43 2167.97 72040.50 7563.75 2303.00 6808.50 3
50 8 2.75 19.38 4.08 0.95 1.73 1807.79 34838.50 9561.75 3119.75 9322.00 3
75 3 2.00 3.00 0.00 0.40 0.00 0.40 0.00 30.00 0.00 0.00 4
75 4 2.00 7.13 0.85 3.91 0.00 60.96 2385.50 575.00 0.00 394.75 4
75 5 2.00 10.63 2.78 1.93 0.00 762.59 31806.00 8029.25 0.00 7547.25 3
75 6 2.00 16.38 3.76 3.03 0.00 401.73 14497.50 2741.25 0.00 1817.25 4
75 7 2.38 15.75 3.44 3.40 0.00 767.85 27668.00 4362.50 0.00 3543.75 4
75 8 2.63 19.38 5.27 3.75 0.50 2947.55 77308.75 10937.50 485.00 8817.00 3
100 3 2.00 3.00 0.00 1.00 0.00 1.00 0.00 72.75 0.00 0.00 4
100 4 2.00 8.25 0.57 5.23 0.00 78.80 1343.75 551.25 0.00 167.75 4
100 5 2.00 12.38 1.78 6.00 0.00 484.63 8336.75 1602.00 0.00 839.50 4
100 6 2.00 16.38 6.87 15.31 4.78 5161.20 48264.75 18090.25 0.00 12833.25 2
100 7 2.13 19.25 8.14 10.68 5.95 6327.64 65120.50 19076.00 0.00 15347.50 2
100 8 2.38 25.25 14.53 6.97 11.85 5418.75 52877.75 21574.50 0.00 14073.00 2

4 Computational Experiments

In order to assess the efficiency of our approach we generated a set of 120 random instances.
In particular, this test-bed includes instances with a number of nodes |V | equal to 10, 20,
50, 75 and 100 and a number of colors |C| ranging from 3 to 8. For every combination of
|V | and |C|, four different instances were created. Those instances must be carefully crafted
to guarantee the existence of a feasible solution. We proceeded as follows. Given set of |V |
randomly generated points in the [1; 1000]2 square, a random TSP solution is built. Then
colors are randomly assigned to the nodes according to this sequence ensuring that there is at



least one node per color and that two adjacent nodes always receive different colors. Then, the
values αh and βh are set consequently, with αh ≥ 1 ∀h ∈ C.

Our branch-and-cut procedure has been implemented in C++ using CPLEX 12.10 Concert
Technology. The max-flow-min-cut algorithm used in all three separation procedures is the
Open-Source implementation of the Boykov-Kolmogorov MAXFLOW v.3.04 algorithm pre-
sented in [2]. All the experiments were carried out on a 64-bit Windows machine, equipped
with processor Intel i7-6700K, 4.00 GHz and 16 GB of RAM. CPLEX is set to its default
configuration. We set a time-limit of 7200 seconds on all instances.

Preliminary results obtained by our approach are shown in TAB. 1. For each pair |V | and
|C| we report average values over all four instances of the same category. In detail, columns α
and β shows the average values of αh and βh for each category of instances, columns GR% and
TR contains the percentage MIP gap at root node (wrt the best known solution) and solution
time (in seconds) at root node, while columns GF% and TF report the final gap and solution
time. The total number of nodes explored in the branch-and-bound tree is shown in column
BBNode. The average number of violated constraints found by each separation procedure
is detailed in columns Cut (3), Cut (4) and Cut (5); note that these values do not include
constraints (3) with |S| = 2 and (4) with |S| = 2 that are embedded in the model. Finally, the
total number of instances per category solved to optimality is reported in column Opt.

Our branch-and-cut algorithm has been able to find the optimal solution on 110 instances
over 120. In detail, all instances with five color or less are solved to proven optimality in, on
average, less than 10 minutes. In particular, instances with three color are all solved at the
root node. However, in ten instances our approach is not able to find the optimal solution and
the average final gap is about 4% with two of the largest instances reporting final gaps greater
than 10%. All these instances are characterize by more than five colors, larger than average
values for both αh and βh and a gap at root node ≥ 5%.

In conclusion, preliminary experiments demonstrate the viability of our algorithm for the
exact solution the MCTSP. Further experiments on instances taken from the literature are
required to prove the general efficiency of the proposed approach.

References
[1] D. L. Applegate, R. E. Bixby, V. Chvatál, and W. J. Cook. The Traveling Salesman

Problem: A Computational Study. Princeton University Press, 2006.

[2] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max- flow al-
gorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(9):1124–1137, 2004.

[3] Harlan Crowder and Manfred W. Padberg. Solving large-scale symmetric travelling sales-
man problems to optimality. Management Science, 26(5):495–509, 1980.

[4] Luis Gouveia and Juan-José Salazar-González. Polynomial-time separation of enhanced
reverse multistar inequalities. Operations Research Letters, 41(3):294 – 297, 2013.

[5] G. Gutin and A. P. Punnen, editors. The Traveling Salesman Problem and Its Variations.
Springer, Boston, MA, 2002.


