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Abstract

In the talk the authors present some tight upper bounds on global edge alliance
number and global complete alliance number of trees. Moreover, we present our NP-
completeness results from [8] for global edge alliances and global complete alliances on
subcubic bipartite graphs without pendant vertices. We discuss also polynomial time
exact algorithms for finding the minimum global edge alliance on trees [7] and complete
alliance on trees [8].
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1 Introduction
Let G be a simple nonempty graph. By G[A], where A ⊂ V (G), we denote a subgraph of G
induced by set A. Let X ⊂ V (G), by an open neighborhood of X in graph G we mean the
set {v ∈ V (G) : ∃u∈X{v, u} ∈ E(G)}, denoted by NG(X). By a closed neighborhood of X in
graph G we mean set X ∪ NG(X), denoted by NG[X]. Set X is a dominating set of G iff
V (G) = NG[X]. Set X is a total dominating set of G iff V (G) = NG(X). By an isolated vertex
(in a graph G) we mean a vertex of degree 0. By a pendant vertex we mean a vertex of degree
1. A neighbor of a pendant vertex in a tree we call a support vertex.

Let S ⊂ V (G). For any non-empty subset X of S we define the predicate SECG,S(X) = true
iff |NG[X]∩ S| ≥ |NG[X] \ S|. We use the notation SEC(X) instead of SECG,S(X), if G and
S are clearly given. For the sake of notation simplicity, we write NG[v] and NG[v, u] instead
of NG[{v}] and NG[{v, u}], respectively, and analogously, SEC(v) and SEC(v, u).

The concepts of edge alliances and complete alliances in graphs arise from the the concept
of defensive alliances [4, 5]. An alliance (or defensive alliance) in a graph G is a set S ⊂ V (G)
such that ∀v∈SSECG,S(v) = true. If S is also a dominating set of G, we call it a global
alliance of G, and by γa(G) we denote the size of the minimum global alliance in a graph
G. The problem has interesting applications in different fields of study, most notably in web
communities [3] and in fault-tolerant computing [9].

An edge alliance in a graph G is a set S ⊂ V (G) such that there is no isolated vertices in G[S]
and ∀{u,v}∈E(G[S])SECG,S(u, v) = true. If S is also a dominating set of G, we call it a global
edge alliance of G, and by γea(G) we denote the size of the minimum global edge alliance
in a graph G. The concept was introduced in [6] and studied in [7], where authors proved
NP-completeness of the global edge alliance problem for subcubic graphs, and showed lower
bounds on γea for arbitrary graphs, and gave exact values of γea for some classes of graphs,
e.g., for complete multipartite graphs and for complete k-ary trees. Also, authors constructed
polynomial time algorithm solving the global edge alliance problem for trees.

We introduce the concept of complete alliance. Let S ⊂ V (G) for a given graph G. Set S
is a complete alliance in G iff for each clique K ⊂ V (G[S]) we have SECG,S(K) = true. A



complete alliance S is a global complete alliance in G if it also dominates G. By γca(G) we
denote the size of the minimum global complete alliance in graph G.

In the paper we prove some tight bounds on the global edge alliance and the global complete
alliance in trees. Moreover, we prove some NP-completeness results for the above problems for
subcubic bipartite graphs with some other restrictions. The polynomial time exact algorithm
for finding the minimum global complete alliance is also constructed.

2 Bounds on γea and γca

In the paper we present new upper bounds on γea and γca for trees. Let us observe some
relations between γa, γt, γea and γca. From the definition we have

Proposition 1 Let G be a connected graph. Then,

1. γt(G) ≤ γea(G),

2. γa(G) ≤ γca(G),

3. if δ(G) ≥ 2, then γca(G) ≥ γea(G) ≥ γt(G),

4. if ∆(G) ≤ 3, then γea(G) ≥ γca(G) ≥ γa(G) and γea(G) ≥ γt(G) ≥ γa(G).

FIG. 1: The examples of the global alliance number and the global edge alliance number: (a) γa =
2 < γea = 3 and (b) γea = 3 < γa = 5.

There is no such a relation, in general, between the global alliance number and the global
edge alliance number, which is shown in Fig. 1. Note that γca and γea are also not related in
the class of trees with the maximum degree bounded by 4. In Fig. 2 there are presented two
graphs T1 and T2 such that γca(T1) < γea(T1) and γea(T2) < γca(T2).

FIG. 2: γca(T1) = 3 < γea(T1) = 4 and γca(T2) = 5 > γea(T2) = 3.

It is worth to observe also that γca and γt are not related in subcubic trees. In Fig. 3 there
are presented two graphs T1 and T3 such that γca(T1) < γt(T1) and γca(T3) > γt(T3).

FIG. 3: γca(T1) = 3 < γt(T1) = 4 and γca(T3) = 3 > γt(T3) = 2.

In the paper [4] the authors showed the following tight upper bound for trees.

Theorem 1 [4] Let T be a tree with at least three vertices. Then, γa(T ) ≤ 3n(T )
5 .

We proved similar result for the global edge alliance for trees.



Theorem 2 Let T be a tree with n(T ) ≥ 3. Then,

1. γea(T ) ≤ 2n(T )
3 ,

2. γea(T ) = 2n(T )
3 if and only if T is a P2-corona of a tree.

Let s(T ) be the number of support vertices in a tree T . Some upper bounds (using n(T ) and
s(T )) on the global alliance number and the total domination number in trees were proved in
[2] and [1], respectively.

Theorem 3 [2] Let T be a tree with at least three vertices. Then, γa(T ) ≤ n(T )+s(T )
2 .

Theorem 4 [1] Let T be a tree with at least three vertices. Then, γt(T ) ≤ n(T )+s(T )
2 .

In the paper we present our results that are stronger than the results above.

Theorem 5 Let T be a tree with n(T ) ≥ 3. Then, γca(T ) ≤ n(T )+s(T )
2 .

Theorem 6 Let T be a tree with n(T ) ≥ 3. Then, γea(T ) ≤ n(T )+s(T )
2 .

Moreover, we prove that these bounds are tight by showing the full characterisation of trees
for which the above parameters are equal to the given bound.

Definition 1 A star component S of a tree T is a subgraph of T induced by a set of vertices
NT [s], where s ∈ V (T ) is a support vertex in T . A pendant star S in a tree T is a star
component of T such that exactly one edge e ∈ E(T ) connects S with the subgraph T [V (T ) \
V (S)]. If v ∈ e, v ∈ V (T ) \ V (S) is a leaf in T [V (T ) \ V (S)], then S is a leaf-pendant star.

Definition 2 Let S be a star component of a tree T and let s ∈ V (S) be a support vertex in
S. Let l = |NS(s)|. Let {v1, v2, . . . , vl} be a sequence of neighbors of s in the order such that
∀1≤i<l|NT (vi)| ≥ |NT (vi+1)|. A vertex vj (1 ≤ j ≤ l) is full if and only if |NT (vj) \ V (S)| =
max{l − 2j − 2, 0}. The support vertex s is saturated if and only if ∀1≤i≤lvi is full.

Definition 3 By a saturated star component S in a tree T we mean a star component
which has a support vertex s ∈ V (S) that is saturated.

Definition 4 Let T1, T2 and T3 be the following operations on a tree T .

• Operation T1: Attach a star S2l (l = 1 ∨ l ≥ 3) to a vertex v in a star component S of
T , such that v is a leaf in S, v is not full and S is not saturated.

• Operation T2: Insert a path P4 between an leaf-pendant star S of T and the subgraph
G[V (T ) \ V (S)].

• Operation T3: Attach any number of star components S2l (l = 1 ∨ l ≥ 3) to pendant
vertices of the last inserted P4 subgraph.

Let Fea be the family of trees defined as Fea = {T : T is obtained from a star S2k (k = 1∨k ≥ 3)
by a finite sequence of operations T1, T2 and T3} ∪ {S4}.

Theorem 7 Let T be a tree with n(T ) ≥ 3. Then, γea(T ) = n(T )+s(T )
2 if and only if T ∈ Fea.

Definition 5 Let T4, T5 and T6 be the following operations on a tree T .

• Operation T4: Attach a star S2l (l ≥ 2) to a vertex v in a star component S of T , such
that v is a leaf in S.



• Operation T5: Insert a path P4 between an leaf-pendant star S of T and the subgraph
G[V (T ) \ V (S)].

• Operation T6: Attach any number of star components S2l (l ≥ 2) to pendant vertices of
the last inserted P4 subgraph.

Let Fca be the family of trees defined as Fca = {T : T is obtained from a star S2k (k = 1∨k ≥ 3)
by a finite sequence of operations T4, T5 and T6} ∪ {S2}.

Theorem 8 Let T be a tree with n(T ) ≥ 3. Then, γca(T ) = n(T )+s(T )
2 if and only if T ∈ Fca.

3 Algorithms and complexity results
In the papers [7] and [8] the authors presented exact polynomial time algorithms for trees.

Theorem 9 [7] There exists O(n∆2 log ∆) time algorithm finding the minimum global edge
alliance for trees with at most n vertices and the maximum degree bounded by ∆.

Theorem 10 [8] There exists O(n∆ log ∆) time algorithm finding the minimum global com-
plete alliance for trees with at most n vertices and the maximum degree bounded by ∆.

In the paper [7] the authors proved the following NP-completeness result.

Theorem 11 [7] The global edge alliance problem for subcubic graphs is NP-complete.

In the paper [8] the authors proved

Theorem 12 [8] The global complete alliance problem for subcubic bipartite graphs without
pendant vertices is NP-complete.

In the class of connected subcubic bipartite graphs without pendant vertices both problems
global complete alliance problem and global edge alliance problem are equivalent. Thus,

Theorem 13 [8] The global edge alliance problem for subcubic bipartite graphs without pendant
vertices is NP-complete.

4 Open problems
We conjecture that the global complete alliance number in trees may be bounded analogously
to the global alliance number, i.e., let T be a tree with n(T ) ≥ 3, then γca(T ) ≤ 3n(T )

5 .
In general graphs, we state two open problems. Let G be an arbitrary graph.

• Prove γea(G) ≤ 2n(G)
3 or construct the counterexample.

• Prove γca(G) ≤ 3n(G)
5 or construct the counterexample.
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