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Abstract

In the Path-TSP, the travelling salesman is looking for the shortest (s, t)-TSP-path,
i.e. a path through all cities of a given set of cities starting at a given city s and ending
at another given city t, s 6= t, after visiting every city exactly once. In this paper we
identify two new polynomially solvable cases of the Path-TSP where the distance matrix
of the cities is a Demidenko matrix or a Van der Veen matrix, respectively. In each
case we characterize the combinatorial structure of optimal (s, t)-TSP-paths and use the
obtained results to generate dynamic programming algorithms for these problems. Given
the number n of the cities our algorithms have a time complexity of O(|t − s|n5) in the
case of a Demidenko distance matrix and O(n3) in the case of a Van der Veen distance
matrix.

Keywords : combinatorial optimization, dynamic programming, Path-TSP, tractable special
case, Demidenko matrix, Van der Veen matrix.

1 Introduction
Given n cities with an n × n symmetric matrix of distances between them, as well as two
specific cities s and t, s 6= t, the Path-TSP consists in finding a shortest path starting at city
s, ending at city t and visiting each city exactly once. Due to the symmetry of the distance
matrix it is enough to consider only (s, t)-TSP-paths with s < t. Thus any (s, t)-TSP-path
can be thought as being directed: it starts at the city with the smaller index s and ends at
the city with the larger index t, for any s, t ∈ {1, 2, . . . , n}, s < t. Analogous to the classical
TSP also the Path-TSP is known to be NP-hard and APX-hard, even in the metric case, see
eg. [6]. Given the hardness of the problem the characterisation of special cases which can
be solved in polynomial time as well as the development of approximation algorithms are of
obvious interest. Very recently Zenklusen [6] proposed a new 1.5-approximation algorithm for
the metric Path-TSP.

In this paper we focus on polynomially solvable cases (p.s.c.) of the Path-TSP which arise
when the distance matrix of the cities has specific algebraic properties. In contrast to an
impressive number of p.s.c. of the TSP (see eg. surveys [1, 3] and the references therein), we
are aware of just a single p.s.c. of the Path-TSP, namely the case where the cities are points in
the Euclidean plane such that each city is located on the border of the convex hull of the set of
cities. In 1998 Garcia, Jodrá and Tejel ([2]) gave a linear time algorithm to solve this problem.
In general, the combinatorial structure of optimal solutions of a p.s.c. of the Path-TSP for a
specific class of distance matrices can be essentially different from the combinatorial structure
of optimal solutions of p.s.c. of the TSP for the same special class of distance matrix. Thus, in
general, p.s.c. of the Path-TSP cannot be obtained as a modification of already known p.c.s.
of the TSP, as also confirmed by the result of [2].



Our contribution. We identify two new p.s.c. of the Path-TSP related to distance matrices
with specific algebraic properties which are formulated in terms of inequalities to be fulfilled by
the entries of the matrices. In particular we show that the Path-TSP is polynomially solvable
if the distance matrix of the given cities is (a) a Demidenko matrix or (b) a Van der Veen
matrix. Both matrix classes are defined in Section 2. The basic idea of our approach is to
first investigate the combinatorial structure of optimal (s, t)-TSP-paths and identify certain
properties P such that there always exists an optimal solution fulfilling these properties. In a
second step we show that it is possible to optimize in polynomial time over the set of (s, t)-
TSP-paths which fulfill the properties P .

2 Definitions and Notations
Definition 1 Consider a set of n cities {1, 2, . . . , n} with a symmetric n × n distance ma-
trix C = (cij). Given a natural number k, k ≤ n, an (s, t)-path is a sequence τ = 〈τ1 =
s, τ2, . . . , τk = t〉 of cities which starts at s, ends at t, and contains every city from
{τ1, τ2, . . . , τk} ⊆ {1, 2, . . . , n} exactly once. If k = n, the (s, t)-path τ is an (s, t)-TSP-path.
For i ∈ {1, 2, . . . , k − 1} the successor of τi in τ is denoted by τ(τi), i.e. τi+1 = τ(τi). For
i ∈ {1, 2, . . . , k−1}, an arc (τi, τi+1) in τ is called an increasing arc (decreasing arc) iff τi < τi+1
(τi > τi+1).
An (s, t)-path τ is called λ-pyramidal (ν-pyramidal) if it starts with a subsequence of in-

creasing (decreasing) arcs followed by a subsequence of decreasing (increasing) arcs while the
original sequence is just the concatenation of these two subsequences.
For i ∈ {1, . . . , k}, a city τi in a path τ is called a peak (valley) in τ if the arc connecting

it with its predecessor in τ is an increasing (decreasing) arc and the arc connecting it with its
successor in τ is a decreasing (increasing) arc, where the monotonicity requirements need to be
fulfilled only if the corresponding arcs exist.

Definition 2 A symmetric n×n matrix C = (cij) is called a Demidenko matrix if the following
so-called Demidenko conditions are fulfilled

cij + ckl ≤ cjl + cki, for all 1 ≤ i < j < k < l ≤ n. (1)

A symmetric matrix C = (cij) is called a Van der Veen matrix if

cij + ckl ≤ cil + ckj , for all 1 ≤ i < j < k < l ≤ n. (2)

3 The Path-TSP on Demidenko distance matrices
An important concept we work with is that of a forbidden pair of arcs.

Definition 3 In an (s, t)-path τ a pair of arcs (i, τ(i)) and (j, τ(j)) is called a forbidden pair
of arcs if either i < j < τ(i) < τ(j) or i > j > τ(i) > τ(j) holds.

The following result is obtained by applying exchange arguments.

Lemma 3.1 Consider a Path-TSP instance with a Demidenko distance matrix. An optimal
(s, t)-TSP-path can be found among the paths that do not contain forbidden pairs of arcs.

Next we distinguish three cases for the first city s and the last city t in the path: Case (a)
s = 1 and t = n, Case (b) s = 1 and 1 < t < n, and Case (c) s, t ∈ {2, . . . , n− 1}, s < t.
Case (a). As an consequence of Lemma 3.1 and the observation that any (1, n)-TSP-path

with a peak other than n contains a pair of forbidden arcs we obtain the following result.

Theorem 1 The path 〈1, 2, . . . , n〉 is a shortest (1, n)-TSP-path for the Path-TSP with a Demi-
denko distance matrix.



Case (b). The following lemma summarizes some structural properties of optimal 1-t-TPS-
paths for t ∈ {2, . . . , n− 1}, in the case of Demidenko distance matrices.

Lemma 3.2 Consider a Path-TSP on n cities with a Demidenko distance matrix. For any
t ∈ {2, . . . , n}, an optimal (1, t)-TSP-path can be found among (1, t)-TSP-paths where the peaks
decrease and the valleys increase when moving from s to t in the path, i.e. if peak p (valley v)
is reached earlier than peak p′ (valley v′) in the path, than p > p′ (v < v′) holds.
Consider now an optimal (1, t)-TSP-path τ without forbidden pairs of arcs such that the

peaks decrease and the valleys increase when moving from s to t in the path. Let m1 and m2,
m1 > m2, be two consecutive peaks. Let w1 be the valley that precedes peak m1, let w2 be the
valley that follows m1 and precedes m2, and let w3 be the valley that follows m2. Then the
following statements hold:

(i) The (w1,m1)-subpath of τ contains no vertex i for which w2 < i < m2 is fulfilled,

(ii) The (m1, w2)-subpath of τ contains no vertex j for which w3 < j < m2 is fulfilled.

We show that in a path τ fulfilling the properties described in Lemma 3.2 the vertices m2 +
1,m2+2, . . . ,m1 are placed on consecutive positions and form a λ-pyramidal subpath of τ . This
leads to a particular structure of such a (1, t)-TSP-path; it can be seen as a concatenation of λ-
pyramidal subpaths, ν-pyramidal subpaths and a (1, t)-TSP path over the cities {j, j+1 . . . , n}
for some j ≤ t − 2, where the later path fulfills the properties described in Lemma 3.2. This
structure lends itself to a dynamic programming algorithm and we obtain the following result
(the details are omitted for the sake of brevity):

Theorem 2 For a given set of n cities {1, 2, . . . , n} with a Demidenko distance matrix and
t ∈ {2, . . . , n− 1}, an optimal (1, t)-TSP-path can be found in O(n5) time.

Case (c). We show (and exploit) the following additional structural properties of an optimal
(s, t)-TSP-path.

Lemma 3.3 There is an optimal (s, t)-TSP-path τ with 1 < s < t < n, where

(i) vertex 1 precedes vertex n,

(ii) every vertex in the subpath from s to 1 is smaller than every vertex in the subpath from
n to t,

(iii) there is a city p ∈ {s + 1, . . . , t} such that τ can be represented as a concatenation of
two paths τ1(p) and τ2(p) with τ1(p) starting at s and visiting all vertices from the set
{1, 2, . . . , p−1}, and path τ2(p) ending at t and visiting all vertices from the set {p, . . . , n}.

Now the length of an optimal (s, t)-TSP-path with the structure described by Lemma 3.3 can
be computed by considering all possible realisations of vertex p ∈ {s + 1, . . . , t} and the end
vertex of τ1(p) (or equivalently the start vertex of τ2(p)) in Lemma 3.3 and using the result of
Case (b) to compute the optimal length of the paths τ1(p) and τ2(p), respectively. Summarizing
we obtain the following general result (the detail are omitted for the sake of brevity):

Theorem 3 For a given a set of n cities {1, 2, . . . , n} with a Demidenko distance matrix and
s, t ∈ {2, . . . , n− 1}, s < t, an optimal (s, t)-TSP-path can be found in O(|t− s|n5) time.

4 The Path-TSP on Van der Veen distance matrices
Also in this case we need an appropriate definition of a forbidden pair of arcs.

Definition 4 In an (s, t)-path τ a pair of arcs (i, k) and (j, l), with k = τ(i) and l = τ(j) is
called a forbidden pair of arcs if one of the two conditions (A) or (B) below holds:



(A) i < j < l < k or i > j > l > k

(B) i < j < j + 1 < k < l or l < k < k + 1 < j < i

The following lemma summarizes some structural properties of optimal (s, t)-TSP-path in the
case of Van der Veen distance matrices.
Lemma 4.1 Consider a Path-TSP instance over the cities {1, 2, . . . , n} with a Van der Veen
distance matrix C = (cij) and s, t ∈ {1, 2, . . . , n}, s < t. An optimal (s, t)-TSP-path can be
found among the (s, t)-TSP-paths which
(i) do not contain forbidden pairs of arcs,

(ii) do not contain three arcs (i1, j1), (i2, j2), and (i3, j3) such that
max{i1, i2, i3} < min{j1, j2, j3},

(iii) do not contain four arcs (i1, j1), (i2, j2), (k1, l1) and (k2, l2), with i1 < j1, i2 < j2, k1 > l1,
k2 > l2, such that max{i1, i2, l1, l2} < min{j1, j2, k1, k2}.

The results of Lemma 4.1 lead to a straightforward O(n4) dynamic programming algorithm
to compute an optimal (s, t)-TSP-path in this case (using similar ideas as in the dynamic
programming computation of pyramidal tours, see e.g. [4].)

By identifying and exploiting further combinatorial properties of optimal (1, n)-TSP-paths
we obtain an O(n3) dynamic programming algorithm. More precisely, we introduce three
classes of specially structured subpaths: long zigzag, short zigzag, splitted zigzag and zigzag
paths. Then we consider the cases (a), (b) and (c) analogously as in the case of Demidenko
distance matrices. In Case (a) we show that an optimal (1, n)-TSP-path fulfilling the conditions
of Lemma 4.1 can be found among specific concatenations of short zigzags and long zigzags, all
of which can be represented as edges of an auxiliary weighted digraph with O(n) vertices. Then
an optimal (1, n)-TSP-path, is computed by solving a single source shortest paths problem in
the auxiliary digraph, leading to an O(n2) time algorithm. In Case (b) we show that an
optimal (1, t)-TSP-path can be represented as a concatenation of a zigzag path over the cities
{1, 2, . . . , t− 1} with a λ-pyramidal subpath over the remaining cities. An optimal patching of
those subpaths can be done in O(n2) time by means of dynamic programming. Finally, in Case
(c) also the splitted zigzag paths are needed; an optimal (s, t)-TSP-path is a concatenation
of splitted zigzags, λ-pyramidal subpaths and/or ν-pyramidal subpaths, as well as of optimal
(q, t)-TSP-path over the cities {q, q+ 1, . . . , t} for some q < t. in this case an optimal patching
of all subpaths can be determined in O(n3) time by means of dynamic programming.

5 Conclusions and perspectives
We have considered the Path-TSP problem for two classes of distance matrices, Demidenko
matrices and Van der Veen matrices. For each of the two classes we have defined so-called
forbidden pairs of arcs and have shown that there always exists an optimal solution which does
not contain forbidden pairs of arcs. Further, we have identified a number of combinatorial
properties of TSP-paths without forbidden pairs of arcs for each of the two classes. These
properties lead to a full characterization of TSP-paths without forbidden pairs of arcs and
allow the computation of optimal TSP-paths without forbidden pairs of arcs by means of
dynamic programming. In the case of a Demidenko distance matrix an optimal (s, t)-TSP-
path over cities {1, 2, . . . , n} can be determined in O(|t− s|n5) time, where s, t ∈ {1, 2, . . . , n},
s 6= t. In the case of Van der Veen matrices we obtain an O(n2) algorithm for s = 1 and
t ∈ {2, . . . , n}, and an O(n3) algorithm for s, t ∈ {2, . . . , n}, s 6= t.

The new polynomially solvable special cases can be used to define exponential neighbour-
hoods for the Path-TSP over which it can be optimized in polynomial time, see e.g. [5] for
a discussion of similar approaches in the case of the TSP. The design of local search algo-
rithms for the Path-TSP based on these exponential neighborhoods and the analysis of their
performance remains an open problem for further investigations.
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