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Abstract

Conflict detection and resolution is a core task in air traffic management. It is typically
carried out manually by air traffic controllers, who are in charge of ensuring a minimum
separation between aircraft during the flight. Significant effort has been invested towards
automation of this task, which interest and importance is now increasing with the growth
of flying vehicles. In this work, we propose an algorithm to obtain conflict-free trajecto-
ries based on adjustments of nominal velocities and heading angles. The corresponding
mathematical programming formulation is nonlinear due to the intrinsic bounds on air-
craft maneuvers. Our main contribution is an exact algorithm to solve the problem to
optimality without relying on space/time discretization or other simplifications.
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1 Introduction
The number of flying vehicles is expected to grow in the near future, especially due to the
development of technology and urban air mobility. Another factor contributing to this is
the introduction of unmanned aerial vehicles, which are becoming more and more relevant in
military, governmental, and commercial contexts. As a consequence, there is an increasing need
for decision making support tools for real time air traffic management in complex environments
where several conflicts might happen at the same time.

According to the International Civil Aviation Organization [1], aircraft must be separated by
at least 5 NM horizontally and 1000 ft vertically during the flight. A pair of aircraft violating
at least one of these rules are said to be in conflict. In this work, we consider the problem of
aircraft separation in the planar space since altitude change maneuvers are usually neglected
in short-time planning (as they are expensive and uncomfortable for passengers).

We propose a novel exact algorithm, based on mathematical programming techniques, that
adjust the heading angles and nominal speeds to provide conflict-free optimal trajectories.
When only heading angle or speed changes are allowed, the problem can be written as a mixed
integer program [3]. However, when both maneuvers are considered, the formulation becomes
nonlinear. Different simplifications, such as maneuver discretization [2], separated phases for
heading and speed changes [5] or problem relaxations [4], has been considered to approach the
problem. We propose to use a tailored branch and cut that solves the deconfliction problem
under relaxed (and polyhedral) feasible regions for the vectors of velocities.

2 Problem statement
Let A be a set of aircraft flying at the same altitude in a given time window [0, T ] and air
sector. We will denote by D the safety distance that must be maintained between a pair of
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FIG. 1: Geometric analysis of conflict between two aircraft based on relative velocity

aircraft. For every i ∈ A, vi = (vi,x, vi,y) is the vector of velocity of i and, Vij := vi − vj is the
vector of velocity of i relative to aircraft j, for each j ∈ A, i < j. We denote by v the vector
of all the velocities.

Figure 1 shows a geometric analysis of the conflict between two aircraft i, j ∈ A based on
the relative velocity vector Vij . When Vij points somewhere inside the disk of radius D around
j, there is a conflict between the two aircraft. To avoid the conflict, the velocities of i and j
must be modified so that the new relative vector, Vij , lies outside the disk. The two tangents
between i and the disk (dashed-dot lines in Figure 1) delimit the slope of such a suitable vector
Vij . Based on this analysis and using trigonometry, it can be seen that the separation condition
for i and j can be written as in [3]

Vij,y

Vij,x
≥ tan(βij + αij) or Vij,y

Vij,x
≤ tan(βij − αij), (1)

where Vij = (Vij,x, Vij,y), βij is the angle between the segment ij and the x-axis and αij :=
arcsin

(
D

d(i,j)

)
, with d(·, ·) denoting the Euclidean distance. This disjunctive constraint is usu-

ally modeled with binary variables, while we present a different approach.
Other than conflict resolution itself, another important feature that one needs to model are

the bounds for the maneuvers. Due to safety reasons, both speed and heading angles changes
have to be kept under some specified limits. If we call vi, v̄i and θi, θ̄i the lower and upper
bounds for the modified speed and heading angle respectively, the bounding constraints are:

v2
i ≤ v2

i,x + v2
i,y ≤ v̄2

i ∀i ∈ A (2)

tan θi ≤
vi,y

vi,x
≤ tan θ̄i ∀i ∈ A, (3)

where we assume the angles in the interval [−π/2, π/2].
Regarding the objective function, there is a wide range of aspects to consider such as the

deviations from nominal trajectories, fuel consumption, delay reduction, or fairness. The al-
gorithm we describe is conceptually valid for any objective, so we will refer to this function as
f(v). Of course, the algorithm performance will depend on the mathematical representation
of f .

3 Branch and cut algorithm
We propose to use a tailored branch and cut method that solves different relaxations of the
problem. At the root node, we have the following problem:

(P0) =
{

min f(v)
s.t. (vi,x, vi,y) ∈ F 0

i



FIG. 2: Relaxation of the feasible region for vi

The only set of constraints in (P0) are bounding constraints. More precisely, for each aircraft
i ∈ A, F 0

i is a polyhedron enclosing the feasible region for the vector vi, i.e., F 0
i is a relaxation

of (2) together with (3). This is illustrated on Figure 2. Indeed, the grey squared region is
an annulus that corresponds to constraints (2) on the magnitude of vi. The blue sector of
the annulus represents the admissible heading angles and corresponds to constraints (3). Note
that the feasible region, the blue sector of the anunulus, is nonconvex. Polyhedron F 0

i , shown
also in blue, is constructed by taking the segment between the heads of (vi cos θi, vi sin θi) and
(vi cos θ̄i, vi sin θ̄i) and the tangent to the outer disk that is perpendicular to the bisector of
these two vectors.

We denote by ṽ the optimal solution of the problem at the current node of the branching
tree, starting by (P0) at the root. The list of open subproblems is denoted by Π, initially
Π := {(P0)}. We set the current best objective value (upper bound of f) to infinity, f∗ = +∞.
The proposed algorithm is as follows:

While Π is not empty:

1. (P)← extract a problem from Π.

2. Solve (P), i.e., find its optimal solution ṽ. If f(ṽ) ≥ f∗, discard the node (go to step 1).

3. Repeat until ṽ2
i,x + ṽ2

i,y ≤ v̄2
i ∀i ∈ A

3a. Cut: For all i ∈ A such that ṽ2
i,x + ṽ2

i,y ≥ v̄2
i , add a cut to (P). The cut, illustrated

on Figure 3a with a dashed line, is the tangent to the outer disk around i at the
point which is in the same line as i and the head of ṽi .

3b. Find the optimal solution of (P), ṽ. If f(ṽ) ≥ f∗, discard the node and go to step
1.

4. Branch:

4a) If, for some i ∈ A, ṽ2
i,x + ṽ2

i,y ≤ v2
i , add disjunctive cuts to exclude this solution.

In this case we generate two subproblems, (P’) and (P”), with feasible regions
depicted in pink and green in Figure 3b (the disjunctive cuts are illustrated with
dashed lines). We add (P’) and (P”) to Π.

4b) Otherwise, if, for some pair i, j ∈ A, condition (1) is not satisfied, we generate two
subproblems, (P’) and (P”), each of them including one of the inequalities in (1),
and we add them to Π.



(a) Magnitude above the upper bound (b) Magnitude below the upper bound

FIG. 3: Cuts to eliminate unfeasible solutions

4c. Otherwise, if f(ṽ) < f∗, update the incumbent value f∗ := f(ṽ).

End-While

4 Conclusion and perspectives
The presented algorithm defines an exact procedure for aircraft deconfliction were (simulta-
neous) speed and heading angle changes are allowed. It consists of a branch and cut where a
linearly constrained subproblem with continuous variables is solved at every node. As future
perspectives, we contemplate improvements of the algorithm such as the use of valid inequal-
ities (cuts) or the preprocessing of a set C ⊆ A × A of potential conflicting pairs. Another
interesting direction to explore is the performance of the algorithm under different types of
objectives.
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