
Integer Formulation for Computing Transaction Aggregation to
Detect Credit Card Fraud

Mauro Escobar1, Claudia D’Ambrosio1, Leo Liberti1, Sonia Vanier2

1 LIX CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
{escobar,dambrosio,liberti}@lix.polytechnique.fr

2 Université Paris 1 Panthéon-Sorbonne, Paris, France
Sonia.Vanier@univ-paris1.fr

Abstract

Banks assume great costs caused by fraudulent credit card transactions. With the
development of new means of payment and the virtualization of banking services, fraud is
becoming more and more difficult to detect and its frequency is growing at a dizzying rate.
Currently available defense tools are not enough to counter fraud in continuous evolution.
In this work, we present an integer formulation to compute functions of transactions data
that turn to be useful for detecting behavioral patterns present in past fraudulent events.
Our formulation allows the aggregation of transactions over any set of features, in addition
to filtering transactions that verify structured requirements. We test our model with real-
world data from a French bank, using SAT solvers. Numerical results obtained on several
instances show the effectiveness of our approach.

Keywords : Credit card, Fraud detection, Transaction aggregation.

1 Introduction
Fraud on credit cards transactions is a great concern for banks since it represents a non-
negligible loss for them. In 2018, 92.4% of fraud events in the French bank system were
associated to credit card payments and withdrawals, corresponding to 439 million euros and
42% of the total fraud losses (38.4% for payments and 3.6% for withdrawals). Note that the
fraud rate on card transactions was only 0.062% [2].

There are different reasons that explain the source of the credit card fraud. Fraud can occur
when a card has been lost or stolen, and it is subsequently used by someone else. A common
card theft method, for example, is the interception of credit cards in the mail system before
its arrival to the client’s home address. Another type of fraud happens when the information
of the magnetic strip on the card is stolen and used to produce a counterfeit card. This can be
performed by placing additional card readers in ATMs or payment terminals. Malicious soft-
ware is also used to participate in fraudulent transactions: some of these algorithms randomly
create credit card numbers and test them over the internet in order to verify if the number is
accepted by online merchants; there are also false merchant websites that capture credit card
numbers from clients that believe in the security of these interfaces. We finalize this summary
of types of fraud cases by the abusive clients, which are clients who make purchases but then
declare that these payments were not done by them. See [1] for a more detailed description of
fraud methods.

In this work, we analyze data features useful to predict whether a payment transaction can
be fraudulent or not. Dozens of features come together with the payment information of each
purchase, while many other can be constructed from the purchase history of the bank clients.
The former, usually called primary attributes [4], include among others: date and time of the
transaction, credit card number, transaction amount, currency, type of transaction (physical



or long distance), merchant category code, merchant country, merchant identification, acquirer
country, and acquirer identifier. The latter, the derived attributes, are computed by analyzing
the behavior of the clients, that is, these features are functions that have as arguments the
set of transactions that happened in the recent past. As an example, the amount spent in the
last 24 hours by the card associated to a transaction is a derived attribute of this transaction
(taking into account the 24 hours before the transaction happens).

In [4, 5], the authors discuss a transaction aggregation strategy to compute derived attributes
from primary variables, where the aggregation occurs for each transaction over transactions
performed by the same client. Fourteen new derived attributes are presented in [4]. Some
examples are: “transaction amount over month” (average spending per transaction over a 30-
day period on all transaction till this transaction), “number same merchant” (total number of
transactions with the same merchant during the last month), “amount merchant type over 3
months” (average weekly spending on a merchant type during past 3 months before a given
transaction).

Our contribution is an integer programming formulation that computes a generalized derived
attribute by allowing any primary attribute as aggregation field. For example, aggregation by
merchant could help to detect fraudulent points of sale.

2 Preliminaries
Consider a database D = {T1, . . . , TN} of N transactions. Let S = {1, . . . , N} be the set
of indices of transactions in D. A transaction with index s ∈ S is described by a vector
Ts = (ts, cs, as, rs, ms, ps, qs, bs, ds) of primary attributes each of them summarized in Table 1.

Attribute Type Description
ts numerical1 date and time
cs categorical credit card number (client identifier)
as numerical amount of the transaction (in euros)
rs categorical original currency of the transaction
ms categorical merchant category code (MCC)
ps categorical merchant country
qs categorical merchant identifier
bs categorical acquirer (merchant’s bank) country
ds categorical acquirer identifier

TAB. 1: Primary attributes of transaction Ts.

We denote by the corresponding uppercase letter C = {cs : s ∈ S} the set of all credit
card numbers in the database. Similarly, we denote with R, M, P, Q, B, D the set of values of
the remaining categorical primary attributes. We denote by the symbols f or g any generic
attribute in the set {c, r, m, p, q, b, d}, and by the uppercase letters F or G the corresponding set
of values C, R, M, P, Q, B, or D that these attributes take in the database. From here onwards, we
will use interchangeably the terms attribute and field (which were also referred as “features” in
the introduction). We assume that values in the categorical fields are injected to integer values.

3 Formulation
We describe an integer formulation for computing a derived attribute. Such derived attributes
are a generalization of the ones computed in [4, 5], since they allow any of the primary attributes

1We can consider ts as a numerical attribute by considering the length of the time interval between a fixed
initial time (before any transaction in D) and the time of Ts.



to be the aggregation field. They also consider conditions that filter the transactions involved
in the aggregation.

In order to compute the new attribute, we consider:

• τ > 0 : a length of time, to consider past transactions that recently happened before a
specific transaction,

• f1, . . . , fk ∈ {c, r, m, p, q, b, d} : k different aggregation fields,

• g1, . . . , g` ∈ {c, r, m, p, q, b, d} : ` different condition fields,

• g1, . . . , g` : ` values for the corresponding condition fields, that is, gj ∈ Gj for each j ≤ `,

• M > 0 : a large constant.

Using these symbols, for each s ∈ S, we compute a derived attribute xs that counts transactions
having the following characteristics. This new attribute considers only the transactions that
happened at most τ units of time before Ts. Moreover, these transactions are aggregated
according to fields {fi}k

i=1, that is, the considered transactions are the ones having the same
categorical value as Ts on these fields. Lastly, this count only includes transactions that have
value gj on field gj , for j ∈ {1, . . . , `}. The attribute xs can be expressed as follows:

∀s ∈ S : xs =
N∑

u=1
ys,u (1)

∀s, u ∈ S : ys,u =
k+2∏
i=1

ws,u,i ·
∏̀
j=1

zu,j (2)

∀s, u ∈ S,∀i ≤ k : 1− ws,u,i ≤ |fi
s − fi

u| ≤ M(1− ws,u,i) (3)
∀s, u ∈ S : (tu + 1)ws,u,k+1 ≤ ts ≤ tu(1− ws,u,k+1) +Mws,u,k+1 (4)
∀s, u ∈ S : (ts − tu)ws,u,k+2 ≤ τ ≤ (ts − tu − 1)(1− ws,u,k+2) +Mws,u,k+2 (5)

∀u ∈ S,∀j ≤ ` : 1− zu,j ≤ |gj − gj
u| ≤ M(1− zu,j) (6)

∀s, u ∈ S,∀i ≤ k + 2,∀j ≤ ` : ys,u, ws,u,i, zu,j ∈ {0, 1}. (7)

Eq. (1)-(2) consider counting transaction Tu into xs when ys,u = 1, i.e. when all the binary
variables {ws,u,i}k+2

i=1 , {zu,j}`
j=1 are equal to 1. Note that ws,u,i depends on the attributes of

transactions Ts and Tu, whereas zu,j depend only on Tu.
We will assume that M is larger than τ and than any of the possible values of ts, |fi

s − fi
u|

and |gj−gj
u|. Note that we can strengthen this formulation by considering a different constant

M for each of the Eq. (3)-(6), we omit this fact in order to simplify the notation. It is not
difficult to verify that Eq. (3) implies that ws,u,i = 1 if and only if fi

s = fi
u. Similarly, Eq. (6)

implies that zu,j = 1 if and only if gj
u = gj .

The following result clarifies why Eq. (4)-(5) characterize that Tu happens shortly before Ts.

Proposition 1 Let a, b, c be positive integers such that b ≤ c and let w be a binary variable.
Then, (a+ 1)w ≤ b ≤ a(1− w) + cw implies the equivalence “w = 1 if and only if a < b.”

Proof : Assume that the inequalities (a + 1)w ≤ b ≤ a(1 − w) + cw hold. If w = 1, then
(a+ 1) ≤ b ≤ c which leads to a < b. If w = 0, then 0 ≤ b ≤ a. �

Therefore, by Eq. (4)-(5), the variables ws,u,k+1 and ws,u,k+2 are equal to 1 if and only if
tu < ts and ts−tu ≤ τ , respectively. That is, Tu happened before Ts and the time in between
both transactions is less or equal than τ .



Finally, we can linearize Eq. (2) with the following set of equations:
∀s, u ∈ S,∀i ≤ k + 2 : ys,u ≤ ws,u,i (8)
∀s, u ∈ S,∀j ≤ ` : ys,u ≤ zu,j (9)

∀s, u ∈ S : ys,u + k + `+ 1 ≥
k+2∑
i=1

ws,u,i +
∑̀
j=1

zu,j . (10)

Note that, on one hand, if one of the w or z variables is zero, then the right hand side of
Eq. (10) is at most k + ` + 1 and, by Eq. (8)-(9), ys,u = 0. On the other hand, if all w and z
variables are equal to 1, then necessarily, by Eq. (10), ys,u must be 1.

We can also compute the amount of money spent using the same parameters by multiplying
ys,u by the amount of each transaction Tu:

∀s ∈ S : ys =
N∑

u=1
auys,u, Constraints (3)-(10).

4 Conclusions and Future Work
In this work we propose an innovative and efficient approach for bank fraud detection, as a
first stage of an algorithm that finds new derived attributes that have positive correlation with
historical fraudulent events. This problem is of major importance in modern societies both for
banks and for all their industrial and individual customers.

We have implemented a first version of this model by restricting the aggregation to the card
number field and conditions that filter transactions to one merchant country and one merchant
category code. We transform the integer model into a satisfiability problem using the Python
package PySAT [3]. Using a database of 2,400 transactions, in less than 5 minutes, the solver
finds parameters for which the correlation between the derived attribute and fraud is large
enough to be consider as possible predictor of fraud. (We consider that a derived attribute
that have a correlation higher than 10% with fraud is useful as a predictor, since, in practice,
no derived attribute have a correlation higher than 20%.)

It is not difficult to extend the described model to allow conditions that filter transactions
over a set of values instead of single values, that is, extending the condition gj

u = gj to
gj

u ∈ {gj,1, . . . , gj,nj} ⊆ Gj . With this, we will implement an optimization program that finds
the parameters that build derived attributes with high fraud correlation, given a fixed length
of aggregation τ . By repeating this procedure, with different lengths of aggregation, we can
construct a set of derived attributes that, by combining them through logical expression, would
detect specific buying behaviors that are present when fraud has been committed.

References
[1] R.J. Bolton and D.J. Hand. Statistical Fraud Detection: A Review. Statistical Science,

17(3):235–249, 2002.

[2] Banque de France. Rapport annuel 2018 de l’Observatoire de la sécurité des moyens de
paiement, 2019.

[3] A. Ignatiev, A. Morgado, and J. Marques-Silva. PySAT: A Python toolkit for prototyping
with SAT oracles. In SAT, pages 428–437, 2018.

[4] S. Jha, M. Guillen, and J.C. Westland. Employing transaction aggregation strategy to
detect credit card fraud. Expert Systems with Applications, 39(16):12650–12657, 2012.

[5] C. Whitrow, D.J. Hand, P. Juszczak, D. Weston, and N.M. Adams. Transaction aggregation
as a strategy for credit card fraud detection. Data Mining and Knowledge Discovery,
18(1):30–55, 2009.


