
Optimal deployment of security virtual functions in
Software-Defined Networks (SDN)

Sonia Haddad-Vanier1, Celine Gicquel2, Alexandros Papadimitriou3

1 SAMM, Université Paris I Panthéon Sorbonne, France
sonia.vanier@univ-paris1.fr

2 LRI, CNRS - Université Paris Saclay, France
gicquel@lri.fr

3 Orange Labs Products & Services, France
alexandros.papadimitriou@orange.com

Abstract

We study the optimal deployment of security network virtual functions to counter
distributed denial of service attacks in telecommunication networks. We propose a math-
ematical programming formulation for this combinatorial optimization problem and de-
velop a decomposition approach to solve it. Preliminary computational results carried
out on medium-size randomly generated instances are presented.

Keywords : telecommunication network, facility location, mathematical programming.

1 Problem description and mathematical modeling

Telecommunication companies are a major target for cyber-attacks because they operate crit-
ical infrastructures that are widely used to communicate and store large amounts of sensitive
data. Among the most devastating attacks are the distributed denials of service (DDoS). A
distributed denial of service is a type of security attacks in which multiple compromised com-
puter systems attack a target, such as a server or a website, and cause a denial of service for
users of the targeted resource. The monumental growth of multimedia content, the explosion of
cloud computing, the increasing use of mobile phones contribute to reinforcing the frequency,
variability and dangerousness of DDoS attacks.

However, the emergence of new networking technologies such as Software-Defined Network
(SDN) and Network Function Virtualization (NFV) provide a new opportunity to design inno-
vative DDoS mitigation solutions [1]. Namely, network services such as security mechanisms
can now be deployed as virtualized network functions (VNF). Their flexibility and reactivity
allow to postpone the determination of the DDoS defense architecture to be used after the
attack is detected, its target identified and its volume estimated. The defense mechanisms
can thus be placed and sized based on detailed information on the on-going attack. However,
instantiating VNFs is costly and consumes computing resources in the network: it is thus nec-
essary to carefully select their location and numbers. The purpose of this work is to develop an
optimization framework capable of optimally deploying a defense architecture based on VNFs
in order to mitigate the effect of an on-going DDoS attack and prevent the malicious flow from
reaching its target.

The network topology is modeled by a digraph G = (V,E) in which V , the set of nodes,
represents specific equipment in the network and E, the set of arcs, corresponds to the links
that can be used to route the traffic. The routing of the traffic in the network is limited by
the bandwidth of each link e, denoted by be.

The illegitimate traffic corresponding to the DDoS attack is represented as a set A of attacks:
attack a ∈ A corresponds to an illegitimate traffic of ψa Mbps between a source sa ∈ V and a
target ta ∈ V . The main difficulty here is that, as the traffic routing is done dynamically by
algorithms controlled not by the internet service provider (ISP) but by the service providers,
the routing of the malicious flow in the network is not known by the ISP when he has to make
the VNF placement decisions. Let P a be the set of all potential paths between sa and ta for
attack a.

VNFs are used to stop the illegitimate traffic before it reaches its target. A VNF will be
instantiated on a node v ∈ V of the network and will filter the malicious flow. There are N
types of VNFs available. A VNF of type n is characterized by its filtering capacity φn, its cost
Kn and its computing resources consumption. R types of computing resources (CPU, memory,
etc.) are considered. The amount of computing resource r required by the instantiation of one
VNF of type n is denoted by γrn. The amount of computing resource r available at node v is
denoted by Capr

v.
The objective of the proposed mathematical programming model is to decide on the location

and number of VNFs to be placed in the network so as to stop all the malicious flow before
it reaches its target, and this whatever its routing through the network, while minimizing the
total cost and complying with the limitations on the computing resources.

We introduce the following decision variables:
- xn

v : number of VNFs of type n placed at node v,
- ϕa

v: filtering capacity dedicated for attack a at node v,
- fa

p : illegitimate flow routed on path p ∈ P a of attack a,
- za

v : binary variable. za
v = 1 if some filtering of the malicious flow corresponding to attack a

is carried out at node v, and za
v = 0 otherwise.

This leads to the bi-level programming formulation (1)-(6) displayed below.
The objective (1) of the leader problem, i.e. of the ISP, is to minimize the total costs of the

deployed VNF. Constraints (2) ensure that the VNFs installed at node v do not consume more
than the available computing capacity for each computing resource. Constraints (3) allocate
the filtering capacity installed at node v to the identified attacks. Constraints (4) state that
no filtering of attack a can take place at its target ta. Finally, Constraints (5) translate the
fact that we seek to avoid any damage to the attack targets by stopping all the malicious flow
before it reaches them. Here, D represents the amount of malicious flow that will be able to
reach the targets in the worst case, i.e. for the (up to now unknown) malicious flow routing
which is the worst for the current filtering capacity allocation decided by the ISP.

Note how D is computed as the optimal objective value of a second sub-problem which can
be seen as the follower sub-problem of the bi-level programming model. Given the filtering
capacity allocated to stopping each attack a ∈ A, i.e. given ϕa

v, ∀v ∈ V, a ∈ A, decided by the
leader problem, the sub-problem looks for the routing that will maximize the total amount of
unfiltered malicious flow.

Z∗BL = min
∑
v∈V

∑
n∈N

Knxn
v (1)

∑
n∈N

γrnxn
v ≤ Capr

v ∀v ∈ V, ∀r ∈ R (2)
∑
a∈A

ϕa
v ≤

∑
n∈N

φnxn
v ∀v ∈ V (3)

ϕa
ta = 0 ∀a ∈ A (4)

D = 0 (5)
(x, ϕ) ∈ ZNV

+ × RAV
+ (6)

where D, the total damage inflicted to the attack targets, is the optimal value of sub-problem:

D =

max
∑
a∈A

(
∑

p∈P a

fa
p −

∑
v∈V

za
vϕ

a
v) (7)

∑
a∈A

∑
e∈p,p∈P a

fa
p ≤ be ∀e ∈ E (8)

∑
p∈P a

fa
p ≤ ψa ∀a ∈ A (9)

za
v ≥

∑
v∈p∈P a fa

p

ψa
∀a ∈ A, ∀v ∈ V (10)

za
v ∈ {0, 1} ∀a ∈ A, ∀v ∈ V (11)

2 Solution approach and preliminary computational results
Solution approach
We propose a new iterative solution approach based on a decomposition of the problem into
two smaller sub-problems: one for the internet service provider and one for the attacker.
This decomposition algorithm simulates a two player game between the ISP, who places the
filtering VNFs with the aim to minimize his cost, and the attacker who aims to maximize the
damage inflicted to the targets. More precisely, at each iteration, the ISP first decides where to
locate the VNFs taking into account information about the attack routing used in the previous
iterations by the attacker. Based on these placement decisions, the attacker then seeks to route
the malicious flow through the network so as to maximize the amount of flow which will reach
its target without being filtered. If no malicious flow could reach its target, the algorithm stops
and the current VNF placement is considered optimal. If some malicious flow is not filtered, a
set of filtering constraints (one for each attack a) is added to the leader problem to enable the
ISP to update his VNF placement decisions.

The filtering constraints generated at the end of iteration i are obtained as follows. For each
attack a:
1. Record the set of paths currently used by the attacker to route the flow, i.e. the set P a

i ⊂ P a

of paths p such that fa
p > 0 in the current solution of the attacker.

2. Add the filtering constraint
∑

v∈V (P a

i) φ
a
v ≥

∑
p∈P

a

i
f

a
p to the leader problem. Here, V (P a

i)
denotes the set of nodes belonging to at least one of the paths of P a

i .
Note that the attacker sub-problem is a mixed-integer linear program involving path-flow

variables fa
p whose number increases exponentially fast with the network size. To address this

issue, we develop a heuristic solution approach based on column generation for the attacker
sub-problem. Thus, based on the current placement of the VNFs, we first solve the linear relax-
ation of a restricted attacker sub-problem in which only one variable fa

p (the one corresponding
to the shortest path between sa and ta in terms of hops) is considered. We then iteratively
generate additional variables fa

p and solve again the linear relaxation of the restricted master
problem until no more variable fa

p with a negative reduced cost can be found. Note that, in
our case, the pricing problem corresponds to finding a shortest path in a directed graph with
non-negative edge weights and can thus be solved in polynomial time. Finally, we reintroduce
the integrality constraints on variable z and solve the restricted master problem as a mixed-
integer linear program.

Preliminary computational results
We now discuss the results of preliminary computational results carried out to assess the
proposed solution approach and compare it with the previously published heuristic solution
approach LCG presented in [2].

We randomly generated a set of medium-size instances of the problem following the indica-
tions provided by public data released by different cloud and telecom providers. More precisely,
we used 4 internet network topologies from the Internet Topology Zoo library and one topology

LCG DEC
Topology V E Cost T ime(s) Cost #IT #FC Time(s)
Goodnet 17 31 1473 0.3 858 6 22 1.2
BICS 33 48 1690 0.6 754 12 51 3.2

IntelliFiber 73 96 1737 2.4 1040 10 44 5.2
Free 120 167 1560 4.5 1014 6 22 6.6

Cogentco 197 245 1950 12.5 767 24 99 44.8

TAB. 1: Numerical results

corresponding to the network of the French company Free. R = 2 types of computing resources
were taken into account at each node: the number of CPUs and the memory. We considered
three types of nodes: small nodes with Cap = (4, 32), medium nodes with Cap = (40, 160) and
large nodes with Cap = (400, 1600). A single type of VNF was considered requiring γ1,1 = 4
CPUs and γ1,2 = 16 units of memory, providing a filtering capacity of φn = 16 Mbps, with
a unit cost of K1 = 130. The number of source-target pairs was set to |A| ∈ {2, 5}. In each
instance, we considered |A| different sources and a single targeted node, which were randomly
selected. The intensity of each attack (in Mbps) was randomly generated following the normal
distribution N (50, 25).

For each considered topology and value of |A|, we randomly generated 5 instances, leading
to a set of 50 medium-size instances. Each generated instance was solved with the LCG
algorithm presented in [2] and with the solution approach described above. The mathematical
programs were solved using the solver CPLEX 12.8.9 with the default settings. All tests were
run on an Intel Core i5 (1.9GHz) with 16 Gb of RAM, running under Windows 10. For each
solution approach and each topology, we report in Table 1 Cost, the average cost of the VNF
placement, and Time the average computation time. For the decomposition (DEC) algorithm,
we also report #IT , the average number of iterations and #FC the average number of filtering
constraints added to the network manager problem.

Results from Table 1 first show that the proposed approach provides VNFs placement so-
lutions which are significantly less costly than the ones provided by the LGC algorithm: the
average cost is thus divided by a factor of 1.9 when using algorithm DEC instead of algorithm
LGC. This is mainly explained by the fact that algorithm LGC assumes that the potential
flow on each possible path between the source and the target of an attack is equal to ψa, the
total amount of the attack a, whereas in practice, this value is limited by the bandwidth of
the arcs belonging to this path. Algorithm LGC thus largely overestimates the real amount of
the attack flow on each path, which leads to placing more VNFs than what is actually needed.
Moreover, we note that the improvement in the solution quality is obtained at the expense of a
reasonable additional computational effort: the average computation time is namely increased
from 4.1s with algorithm LGC to 12.3s with algorithm DEC.

References
[1] E.B. Fernandez A.M. Alwakeel, A.K. Alnaim. A survey of network function virtualization

security. SoutheastCon 2018, pages 1–8, 2018.

[2] S Haddad-Vanier, C Gicquel, L Boukhatem, K Lazri, and P Chaignon. Virtual network
functions placement for defense against distributed denial of service attack. In Proceedings
of the 8th International Conference on Operations Research and Enterprise Systems, pages
142–150, 2019.

