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Abstract

Co-occurrence networks can be adequately modeled by hyper-bag-graphs (hb-graphs
for short). A hb-graph is a family of multisets having same universe, called the vertex set.
An efficient exchange-based diffusion scheme has been previously proposed that allows
the ranking of both vertices and hb-edges. In this article, we extend this scheme to allow
biases of different kinds and explore their effect on the different rankings obtained. The
biases enhance the emphasize on some particular aspects of the network. The full text
with proofs and results can be found in [1].
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1 Introduction, Background and Related Work
Co-occurrence networks have been shown to be modeled efficiently by using hyper-bag-
graphs (hb-graphs for short) introduced in [2]. When considering an information space1,
different co-occurrence networks are interconnected using a common reference used for
building the co-occurrences of different types [3]. Depending on the information the dif-
ferent co-occurrence networks carry, the ranking of the information held by the associated
hb-graphs has to be performed on different features, and the importance stressed on the
lower, higher, or medium values. Typically considering a publication information space,
and considering the co-occurrences of organizations, countries and subjects in the publica-
tions, we might be interested on focusing on publications that have co-occurrence of small
cardinality for subject categories and high cardinality in the number of organizations and
a medium number of countries. Hence, the necessity of extending the exchange-based
diffusion that is already coupled to a biased random walk given in [4] to a more general
approach. The full text with proofs and results can be found in [1].

A hb-graph H = (V,E) is a family of multisets E = (ej)j∈JpK of same universe
V = {vi : i ∈ JnK}2. The elements of E are called the hb-edges; each hb-edge ej , j ∈ JpK ,
is a multiset of universe V and of multiplicity function: mej

: V → R+. The m-cardinality
#mej of a hb-edge is: #mej

∆=
∑
i∈JnK

mej
(vi) . For more information on hb-graphs, the

interested reader can refer to [5] for a full introduction. A weighted hb-graph has hb-
edges having a weight given by: we : E→ R+.

Different approaches exist in the literature for studying networks based on graphs.
In [6], the authors introduce an abstract information function which is associated to a
probability for each vertex. In [7], a bias is introduced in the transition probability of a
random walk in order to explore communities in a network.

1For a video showing, an Arxiv use case: https://www.infos-informatique.net
2JnK designates the integers between one 1 and n included.1

https://www.infos-informatique.net
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2 Biased Diffusion in Hb-graphs

Let us consider a weighted hb-graph H = (V,E, we) with V = {vi : i ∈ JnK} and E =
(ej)j∈JpK ; we write H = [mej (vi)]i∈JnK

j∈JpK
the incidence matrix of the hb-graph.

2.1 Abstract Information Functions and Bias

A hb-edge based vertex abstract information function: fV : V × E → R+ is
considered. The exchange-based diffusion presented in [8, 4] is a particular example of
biased diffusion. An unbiased diffusion would be to have a vertex abstract function and
a hb-edge vertex function that is put to 1 for every vertices and hb-edges, i.e. equi-
probability for every vertices and every hb-edges.

The vertex abstract information function is defined as the function: FV : V →
R+ such that: FV (vi)

∆=
∑
j∈JpK

fV (vi, ej) . The probability corresponding to this

hb-edge based vertex abstract information is defined as: pfV (ej |vi)
∆= fV (vi, ej)

FV (vi)
.

Considering a vertex bias function: gV : R+ → R+ applied to fV (vi, ej) , we can define
a biased probability on the transition from vertices to hb-edges as:

p̃V (ej |vi)
∆= gV (fV (vi, ej))

GV (vi)
,

where GV (vi), the vertex overall bias, is defined as: GV (vi)
∆=
∑
j∈JpK

gV (fV (vi, ej)) .

Typical choices for gV are: gV (x) = xα or gV (x) = eαx. When α > 0, higher values of
fV are encouraged, and on the contrary, when α < 0 smaller values of fV are encouraged.

Similarly, the vertex-based hb-edge abstract information function is defined
as: fE : E× V → R+. The hb-edge abstract information function: FE : V → R+ is
defined as: FE (ej)

∆=
∑
i∈JnK

fE (ej , vi) . The probability corresponding to the vertex-

based hb-edge abstract information is defined as: pfE (vi|ej)
∆= fE (ej , vi)

FE (ej)
. If we now

consider a vertex bias function: gE : R+ → R+ applied to fE (ej , vi) , we can define a
biased probability on the transition from hb-edges to vertices as:

p̃E (vi|ej)
∆= gE (fE (ej , vi))

GE (ej)
,

where GE (ej), the hb-edge overall bias is defined as: GE (ej)
∆=

∑
i∈JnK

gE (fE (ej , vi)) .

Typical choices for gE are: gE (x) = xα or gE (x) = eαx. When α > 0, higher values of fE
are encouraged, and on the contrary, when α < 0 smaller values of fE are encouraged.

2.2 Biased Diffusion by Exchange

A two-phase step diffusion by exchange is now considered—with a similar approach to
[8, 4]—taking into account the biased probabilities on vertices and hb-edges. At time t,
the vertices hold an information value given by: αt : V → [0; 1] and the hb-edges via:
εt : E→ [0; 1] .

We write PV,t = (αt (vi))i∈JnK the row state vector of the vertices at time t and
PE,t = (εt (ej))j∈JpK the row state vector of the hb-edges. We call information value of the

vertices, the value: It (V ) ∆=
∑
vi∈V

αt (vi) and It (E) ∆=
∑

ej∈E
εt (ej) the one of the hb-edges.

We write: It (H) ∆= It (V ) + It (E) .
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The initialisation is done such that I0 (H) = 1. At the diffusion process start, the
vertices concentrate uniformly and exclusively all the information value. Writing αref =
1
|V |

, we set for all vi ∈ V : α0 (vi) = αref and for all ej ∈ E, ε0 (ej) = 0.

At every time step, the first phase starts at time t and ends at t + 1
2 , where values

held by the vertices are shared completely to the hb-edges, followed by the second phase
between time t+ 1

2 and t+ 1, where the exchanges take place the other way round. The
exchanges between vertices and hb-edges aim at being conservative on the global value
of αt and εt distributed over the hb-graph.

During the first phase between time t and time t+ 1
2, the contribution to the

value εt+ 1
2

(ej) from the vertex vi is given by:

δεt+ 1
2

(ej |vi) = p̃V (ej |vi)αt (vi)

and:

εt+ 1
2

(ej) =
n∑
i=1

δεt+ 1
2

(ej | vi) .

We have:

αt+ 1
2

(vi) = αt (vi)−
p∑
j=1

δεt+ 1
2

(ej | vi) .

It holds: ∀i ∈ JnK : αt+ 1
2

(vi) = 0, and: It+ 1
2

(H) = 1.

We introduce the vertex overall bias matrix: GV
∆= diag

(
(GV (vi))i∈JnK

)
and the

biased vertex-feature matrix: BV
∆= [gV (fV (vi, ej))]i∈JnK

j∈JpK
. It holds:

PE,t+ 1
2

= PV,tG
−1
V BV . (1)

During the second phase that starts at time t+ 1
2, the values held by the hb-

edges are transferred to the vertices. The contribution to αt+1 (vi) given by a hb-edge ej
is proportional to εt+ 1

2
in a factor corresponding to the biased probability p̃E (vi|ej) :

δαt+1 (vi | ej) = p̃E (vi|ej) εt+ 1
2

(ej) .

Hence, we have: αt+1 (vi) =
p∑
j=1

δαt+1 (vi | ej) and:

εt+1 (ej) = εt+ 1
2

(ej)−
n∑
i=1

δαt+1 (vi | ej) .

It holds: ∀j ∈ JpK : εt+1 (ej) = 0, and: It+1 (H) = 1.
We now introduce GE

∆= diag
(

(GE (ej))j∈JpK

)
the diagonal matrix of size p × p and

the biased hb-edge-feature matrix: BE
∆= [gE (fE (ej , vi))]j∈JpK

i∈JnK
, it comes:

PE,t+ 1
2
G−1

E BE = PV,t+1. (2)

Regrouping (1) and (2):
PV,t+1 = PV,tG

−1
V BVG

−1
E BE. (3)

It is valuable to keep a trace of the intermediate state: PE,t+ 1
2

= PV,tG
−1
V BV as it records

the information on hb-edges.
Writing T = G−1

V BVG
−1
E BE, it follows from 3: PV,t+1 = PV,tT. T is a square row

stochastic matrix of dimension n. Assuming that the hb-graph is connected, the biased
feature exchange-based diffusion matrix T is aperiodic and irreducible. Hence, (αt)t∈N
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converges to a stationary state which is the probability vector πV associated to the eigen-
value 1 of T. Nonetheless, due to the presence of the different functions for vertices and
hb-edges, the simplifications do not occur anymore as in [8, 4] and thus we do not have
an explicit expression for the stationary state vector of the vertices. The same occurs for
the expression of the hb-edge stationary state vector πE which is still calculated from πV
using the following formula: πE = πVG

−1
V BV .

3 Evaluation and Further Comments
We have randomly generated connected hb-graphs with 200 collaborations—built out of
10,000 potential vertices—with a maximum m-cardinality of 20, such that the hb-graph
has five groups that are generated with two of the vertices chosen out of a group of 10,
that have to occur in each of the collaboration; there are 20 vertices that have to stand
as central vertices, i.e. that ensures the connectivity in between the different groups of
the hb-graph.

The approach is similar to the one taken in [8, 4], using the same hb-edge based vertex
abstract information function and the same vertex-based hb-edge abstract information
function, but putting different biases. We compare the rankings obtained on vertices and
hb-edges after 200 iterations of the exchange-based diffusion using the strict and large
Kendall tau correlation coefficients for the different biases. We present the results as a
visualisation of correlation matrices in [1].

The results obtained on randomly generated hb-graphs have still to be applied to real
hb-graphs, with the known difficulty of the connectedness: it will be addressed in future
work.
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