
A Sparse Matrix Approach for Covering Large Complex
Networks by Cliques

W. M. Abdullah1, S. Hossain2, M. A. Khan3

1 University of Lethbridge, Alberta, Canada
w.abdullah@uleth.ca

2 University of Lethbridge, Alberta, Canada
shahadat.hossain@uleth.ca

3 InBridge Inc, Lethbridge, Alberta, Canada
muhammad@inbridgeinc.com

Abstract
A classical NP-hard problem is the Edge Clique Cover (ECC) problem, which is

concerned with covering edges of a graph with the minimum number of cliques. There
are many real-life applications of this problem, such as, in food science, computational
biology, efficient representation of pairwise information and so on. Based on sparse matrix
data structures, in this work we propose using a compact representation of network data.
We proffer selecting edges by their degree-based orders during the clique-cover step of
an existing heuristic. On a set of standard benchmark instances our ordered approach
produced smaller sized clique covers compared to random unordered processing in most
of the instances.

Keywords : Adjacency matrix, Clique cover, Intersection matrix, Ordering, Sparse graph.

1 Introduction
The graph kernel operations, such as, identification of and computation with dense subgraphs
that arise in areas as diverse as sparse matrix determination and complex network analysis [8, 7].
In social networks, identifying special interest groups or characterizing information propagation
are examples of frequently performed operations [12]. Effective representation of network data
is critical to meeting algorithmic challenges especially for very large and sparse graphs. In this
paper, we propose sparse matrix data structures to enable compact representation of graph
data and use an existing sparse matrix framework [5] to design efficient algorithms for the ECC
problem.

Let G = (V,E) be an undirected connected graph, where V is the set of vertices and E is
the set of edges. A clique is a subset of vertices such that every pair of distinct vertices are
connected by an edge in the induced subgraph. In graph G, an edge clique cover of size k is
a decomposition of set V into k subsets C1, C2, . . . , Ck such that Ci, i = 1, 2, . . . , k induces a
clique in G and each edge {u, v} ∈ E is included in some Ci. A trivial clique cover can be
specified by the set of edges E with each edge being a clique. Finding a clique cover with
minimum number of cliques (and many variants thereof) is known to be NP-hard problem[10].

In the literature, many heuristics have been proposed to approximately solve ECC problem
while there are only few exact methods which are usually limited to solving small instance sizes.
A recent approach is described by Conte et al. in [2], where they introduce O(m∆) heuristic
to cover all edges of given graph, where m is the number of edges and ∆ is the highest degree
of the graph.

In this paper we propose a compact representation of network data based on sparse matrix
data structures [6] and provide an improved algorithm based on an existing heuristic [2] for
finding clique cover. In [1], we proposed similar compact representation of network data which
produced smaller sized clique cover than [4].

Our approach is based on the simple but critical observation that for a sparse matrix A ∈
Rm×n, the row intersection graph of A is isomorphic to the adjacency graph of AA>, and
that the column intersection graph of A is isomorphic to the adjacency graph of A>A [5].
Therefore, the subset of rows corresponding to nonzero entries in column j induces a clique in
the adjacency graph of AA>, and the subset of columns corresponding to nonzero entries in row
i induces a clique in the adjacency graph of A>A. Note that, matrices A>A and AA> are most

likely dense even if matrix A is sparse. In this work, we exploit the connection between sparse
matrices and graphs in the reverse direction. We show that given a graph (or network), we
can define a sparse matrix, intersection matrix, such that graph algorithms of interest can be
expressed in terms of the associated intersection matrix. This structural reduction enables us to
use existing sparse matrix computational framework to solve graph problems [5]. This duality
between graphs and sparse matrices has also been exploited where the graph algorithms are
expressed in the language of sparse linear algebra [8, 9]. However, they use adjacency matrix
representation which is different from our intersection matrix representation.

2 Compact Representation and Edge Clique Cover
For efficient computer implementation of many important graph operations, representing graphs
using adjacency matrix and adjacency list are inadequate. Adjacency matrix is costly for sparse
graphs and typical adjacency list implementations employ pointers where indirect access leads
to poor cache utilization. The intersection matrix representation that we propose below en-
ables efficient representation of pairwise information and allows us to utilize computational
framework DSJM to implement the ECC algorithm.

2.1 Intersection Matrix
We require some preliminary definitions. The adjacency graph associated with a matrix A ∈
Rn×n is a graph G = (V,E) in which for each column or row k of A there is a vertex vk ∈ V
and A(i, j) 6= 0 implies {vi, vj} ∈ E. The column intersection graph associated with matrix
A ∈ Rm×n is a graph G = (V,E) in which for each column k of A there is a vertex vk ∈ V and
{vi, vj} ∈ E whenever there is a row l for which A(l, i) 6= 0 and A(l, j) 6= 0.

Let G = (V,E) be an undirected and connected graph without self-loops or multiple edges
between a pair of vertices. The adjacency matrix A(G) ≡ A ∈ {0, 1}|V |×|V | associated with
graph G is defined as,

A(i, j) =
{

1 if {vi, vj} where i 6= j is in E
0 otherwise

Let the edges in E be labeled e1, . . . , e|E|. An intersection matrix associated with graph
G = (V,E) where |V | = n and |E| = m, is a matrix C ∈ {0, 1}m×n where for edge ek =
{vi, vj}, k = 1, . . . ,m we have C(k, i) = C(k, j) = 1, and all other entries of matrix C are zero.

Let C ∈ {0, 1}m×n be the intersection matrix as defined above associated with a graph
G = (V,E). Consider the product B = C>C.

Theorem 1 The adjacency graph of matrix B is isomorphic to graph G. [1]

Theorem 1 establishes the desired connection between a graph and its sparse matrix repre-
sentation. The following result follows directly from Theorem 1.

Corollary 1 The diagonal entry B(i, i) where B = C>C and C is the intersection matrix of
graph G, is the degree d(vi) of vertex vi ∈ V, i = 1, . . . , n of graph G = (V,E). [1]

Intersection matrix C defined above represents an edge clique cover of cardinality m for
graph G. Each edge {vi, vj} constitutes a clique of size 2. In the intersection matrix C, edge
ek = {vi, vj} is represented by row k with C(k, i) = C(k, j) = 1 and other entries in the row
being zero. In general, column indices l in row k where C(k, l) = 1 constitutes a clique on
vertices vl of graph G. Thus the ECC problem can be cast as a matrix compression problem.

ECC Matrix Problem. Given A ∈ {0, 1}m×n determine A′ ∈ {0, 1}k×n with k minimized
such that the intersection graphs of A and A′ are isomorphic.

3 Clique Cover using a heuristic
The heuristic algorithm that we have implemented for the ECC problem is based on an algo-
rithm due to Conte et al. in [2]. For ease of presentation we discuss the algorithm in graph

theoretic terms. However, our computer implementation uses sparse matrix framework of
DSJM [5] and all computations are expressed in terms of intersection matrices.

We employ three vertex ordering algorithms from the literature: Largest-first order (LFO),
Smallest-Last Order (SLO), and Incidence-degree Order (IDO) prior to applying the heuristic
[2].

For a vertex v ∈ V we define by Nv = {w ∈ V | {v, w} ∈ E} the set of its neighbors. We
recall that d(v) = |Nv| denotes the degree of vertex v in graph G = (V,E). LFO orders the
vertices such that {d(vi), i = 1, . . . , n} is nonincreasing. SLO assumes that the last n − k
vertices {vk+1 . . . , vn} in smallest-last order have been determined. The kth vertex in the order
is an unordered vertex whose degree in the subgraph induced by V \{vk+1, . . . , vn} is minimum.
IDO assumes that the first k − 1 vertices {v1 . . . , vk−1} in incidence-degree order have been
determined. Choose vk from among the unordered vertices that has maximum degree in the
subgraph induced by {v1, . . . , vk}.

Next, we present a new algorithm for the ECC problem.
Let the vertices of graph G = (V,E) be ordered in one of SLO, LFO, and IDO: v1, . . . , vn.

Then we order edges considering the vertex order, such that, ei ∈ E will be considered before
ej ∈ E if one of the vertices of ei is ordered before the vertices of ej .

Also, let EP = {e1, . . . , ei−1} denote the edges that have been assigned to one or more cliques
{C1, . . . , Ck−1} and ei = {vi, vj} be the edge currently being processed. Denote by set

W = {vl | {vi, vl}, {vj , vl} ∈ E}

the common neighbors of vi and vj . The task is to assign edge {vi, vj} (if not covered yet) to
one new clique and add its common neighbors if they satisfy clique properties.

The complete algorithm is presented below.
CliqueDecomp (W , list)

1: k ← 0 . Number of cliques
2: for index = 1 to m do . m is number of edges
3: {u, v} ← list[index] . list contains the edges in a predefined order
4: if {u, v} is not covered then
5: W ← FindCommonNeighbours(u, v)
6: if W = ∅ then
7: k + +
8: Ck ← {u, v}
9: Mark {u, v} as covered.

10: else
11: k + +
12: Ck ← {u, v}
13: Mark {u, v} as covered.
14: while W 6= ∅ do
15: t← take a vertex from W
16: if t has edges with all s ∈ Ck then
17: Mark {t, s} as covered.
18: Ck ← Ck ∪ {t}
19: W = W ∩Neighbort . Neighbort denotes the neighbors of vertex t
20: return C1, C2, ..., Ck

3.1 Discussion

Line 5 calls FindCommonNeighbours and Line 19 finds Neighbort. We have implemented
these using DSJM [5] which takes liner time for these operations. Because, in our implemen-
tation to find the neighbors for each non-zero entries of the selected column we look for the
non-zero entries in the same row. So in total each row is searched ρ2

i times where ρi is the
number of nonzero elements in the row i. If we have m rows (outer loop runs for m times in
line 2), sequential ordering will take O(

∑m
i=1 ρ

2
i) operations. Line 16 takes O(∆) times, because

we look for ∆ number of edges for vertex t. Hence this heuristic takes O(m∆) time. Where m
is the number of edges and ∆ denotes the degree of a vertex.

4 Numerical Testing
In this section, we provide results from numerical experiments on selected test instances. The
data set for the experiments is obtained from the University of Florida Sparse Matrix Collection
[3]. The experiments were performed using a PC with 3.4G Hz Intel Xeon CPU, 8 GB RAM
running Linux. The implementation language was C++ and the code was compiled using −O2
optimization flag with a g++ version 4.4.7 compiler.

Stanford Network Analysis Platform (SNAP) is a collection of more than 50 large network
datasets containing large number of nodes and edges including social networks, web graphs,
road networks, internet networks, citation networks, collaboration networks, and communica-
tion networks [11].

Test results for the selected test instances from group SNAP are reported in Table 1. Here,
n represents the number of vertices and m represents the number of edges of the graph. |C|
represents number of cliques required to cover all the edges.

TAB. 1: Test Results (Number of cliques) for SNAP matrices
Matrix Heuristic-1 Heuristic-2 Heuristic-3
Name m n (using [1]) (using [2]) (Proposed)
p2p-Gnutella04 39994 10878 38474 38491 38449
p2p-Gnutella24 65369 26518 63726 63725 63689
p2p-Gnutella25 54705 22687 53368 53367 53347
p2p-Gnutella30 88328 36682 85823 85822 85717
ca-GrQc 14496 5242 3777 3753 3717
as-735 13895 7716 8985 8938 10130
Wiki-Vote 103689 8297 42914 39393 51145
Oregon-1 23409 11492 15631 15491 15527
ca-HepTh 25998 9877 9663 9270 9162

Table 1 displays results using our new algorithm (Heuristic-3), our old algorithm (Heuristic-1)
discussed in [1] and algorithm (Heuristic-2) discussed in [2]. Heuristic-1 constructs a clique
cover by trying to add the next vertex to an existing clique, whenever possible. On the other
hand, Heuristic-2 randomly selects an edge and attempts to build a clique around the se-
lected edge. Heuristic-3 produces smaller cardinality ECC than Heuristic-1 except for
two instances. On the other hand, it compares favourably with Heuristic-2 (six out of nine
instances

5 Conclusion
In this work we have proposed a compact representation of network data. The edge clique
cover problem is recast as a sparse matrix determination problem. The notion of intersection
matrix provides a unified framework that facilitates compact representation of graph data and
efficient implementation of graph algorithms. The adjacency matrix representation of a graph
can potentially have many nonzero entries since it is the product of an intersection matrix with
its transpose. We have shown that similar to graph vertex coloring problem ECC problem is
sensitive to ordering of the vertices and hence ordering of the edges.

References
[1] W. M. Abdullah, S. Hossain, and M. A. Khan. Covering Large Complex Networks by

Cliques - A Sparse Matrix Approach. AMMCS 2019 International Conference, Waterloo,
Canada, 2019.

[2] Alessio Conte, Roberto Grossi, and Andrea Marino. Large-scale clique cover of real-world
networks. Information and Computation, 270:104464, 2020.

[3] T. Davis and Y. Hu. Suitesparse matrix collection. https://sparse.tamu.edu/. Accessed:
2019-10-02.

[4] J. Gramm, J. Guo, F. Huffner, and R. Niedermeier. Data reduction, Exact and Heuristic
Algorithms for Clique Cover. Proceedings of the Eighth Workshop on Algorithm Engineer-
ing and Experiments (ALENEX), SIAM, pages 86–94, 2006.

[5] M. Hasan, S. Hossain, A. I. Khan, N. H. Mithila, and A. H. Suny. DSJM: A Software
Toolkit for Direct Determination of Sparse Jacobian Matrices. In: G.M. Greuel, T. Koch,

P. Paule, A. Sommese and Editors. ICMS2016. Springer International Publishing Switzer-
land, pages 425–434, 2016.

[6] S. Hossain and A. I. Khan. Exact Coloring of Sparse Matrices. In: D.M. Kilgour et al.
(eds.) Recent Advances in Mathematical and Statistical Methods. Springer Proceedings
in Mathematics and Statistics, Springer Nature Switzerland AG, 259:23–36, 2018.

[7] S. Hossain and A. H. Suny. Determination of Large Sparse Derivative Matrices: Struc-
tural: Orthogonality and Structural Degeneracy. In: B. Randerath, H. Roglin, B. Peis,
O. Schaudt, R. Schrader, F. Vallentin and V. Weil. 15th Cologne-Twente Workshop on
Graphs & Combinatorial Optimization, Cologne, Germany, pages 83–87, 2017.

[8] J. Kepner and J. Gilbert. Graph Algorithms in the Language of Linear Algebra, Society
for Industrial and Applied Mathematics. Philadelphia, PA, USA, 2011.

[9] J. Kepner and H. Jananthan. Mathematics of big data: Spreadsheets, databases, matrices,
and graphs. MIT Press, 2018.

[10] LT Kou, LJ Stockmeyer, and CK Wong. Covering edges by cliques with regard to keyword
conflicts and intersection graphs. Communications of the ACM, 21(2):135–139, 1978.

[11] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collec-
tion. http://snap.stanford.edu/data, June 2014. Accessed: 2019-10-02.

[12] S Wasserman and K Faust. Social network analysis: Methods and applications. Cambridge
university press, 1994.

