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Abstract

In this paper we address non-convex Mixed-Integer Non-Linear Programs where the
non-convexity is manifested as the sum of non-convex univariate functions. Motivated by
the Sequential Convex Mixed Integer Non Linear Programming technique, we compare
the three classical different formulations for piecewise problems: the incremental model,
the multiple choice model, and the convex combination model. For piecewise-linear func-
tions, these models are known to be equivalent. We show that this is not the case for
piecewise-convex functions, where one of the three formulations is weaker than the other
two. Computational results on a target application illustrate the practical impact of this
property.

Keywords : Global optimization, Non-convex separable functions, Sequential Convex MINLP
technique.

1 Introduction
Mixed-Integer Nonlinear Programs (MINLPs) have been more in the focus of researchers in
recent years, due to their ability to model an extremely wide variety of real-world applications.
However, solving practical MINLPs to global optimality, especially non-convex ones, remains
very challenging. It is therefore of paramount importance to exploit all structural properties of
the MINLPs at hand. In [3], the Sequential Convex Mixed Integer Non Linear Programming
(SC-MINLP) technique has been defined for MINLPs where the non-convexity is manifested
as the sum of non-convex univariate functions. This work, motivated by applications in air
traffic management, focuses on the same class problems, i.e.,

min
∑

j∈N cjxj (1)

fi(x) +
∑

j∈H(i) gij(xj) ≤ 0 i ∈M (2)

lj ≤ xj ≤ uj j ∈ N (3)
xj ∈ Z j ∈ I. (4)

The sets M , N , I ⊆ N , and H(i) ⊆ N are finite. The functions fi : Rn → R are convex and
multivariate. The functions gij : R → R are non-convex univariate. We assume that lj and
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uj are finite bounds for xj that appear in gij functions. Even in the case where there are no
integer variables, i.e., I = ∅, the problem remains NP-hard.

The SC-MINLP technique deals with this problem by computing a piecewise-convex relax-
ation of each gij(xj), which can be strengthened with the Perspective Reformulation technique
[2]. That approach uses the well-known Incremental Model (IM) to formulate the piecewise-
convex functions. In this work, we focus on alternative models for these, in particular the
well-known Convex-Combination (CCM) and Multiple Choice (MCM) ones. These are typi-
cally used interchangeably for Mixed-Integer Linear Programs, since they have similar size and
provide the same lower bound [1]. However, this is not the case for nonlinear piecewise-convex
programs.

2 Piecewise models for Sequential Convex MINLP technique

The SC-MINLP framework computes the breakpoints lj = l1ij < l2ij < ... < l
s(ij)
ij < l

s(ij)+1
ij = uj

where the non-convex functions gij change convexity/concavity. In practice, this is done by
computing by the zeros of the second derivative of gij using some algebraic package, such as
MATLAB. Then, for fixed i and j ∈ H(i), we denote by Sij = { s : gij is concave in the
sub-interval [lsij , ls+1

ij ] }, and Š(ij) = { s : gij is convex in the sub-interval [lsij , ls+1
ij ] }. On

Sij the function is substituted with its the best possible convex relaxation (a linear function),
while the convex parts are kept as they are. This defines a convex MINLP, whose continuous
relaxation therefore provides valid lower bounds. However, this reformulation step can actually
be done in different ways. In [3, 2], the following Incremental Model is used.

2.1 Incremental Model (IM)

The IM introduces a segment load variable, xs
ij , for each sub-interval [lsij , ls+1

ij ]. Feasibility
requires that the value on xs+1

ij be zero unless xs
ij is “full,” that is, xs+1

ij > 0 only if xs
ij = ls+1

ij −lsij .
For this purpose the IM introduces binary variables, ys

ij , defined by the condition that ys
ij = 1

if xs
ij > 0, and ys

ij = 0 otherwise, finally yielding

min
∑

j∈N cjxj (5)

f̄i(x) +
∑

j∈H(i)
∑

s∈Š(ij) z
s
ij ≤ 0 i ∈M (6)

zs
ij ≥ gij(lsij + xs

ij)− gij(lsij) s ∈ Š(ij), j ∈ H(i), i ∈M (7)

xj = lj +
∑

s∈S(ij) x
s
ij j ∈ H(i), i ∈M (8)

(ls+1
ij −lsij)ys+1

ij ≤ xs
ij ≤ (ls+1

ij −lsij)ys
ij s ∈ S(ij), j ∈ H(i), i ∈M (9)

ys
ij ∈ {0, 1} s ∈ S(ij), j ∈ H(i), i ∈M (10)
xj ∈ Z j ∈ I (11)

where f̄i = fi(x) +
∑

j∈H(i) gij(l1ij) +
∑

s∈Ŝ(ij) α
s
ijx

s
ij . Clearly, f̄i is convex since fi was.

2.2 Multiple Choice Model (MCM)

The MCM is an alternative definition of the segment variables. The load variable xs
ij , for each

segment s, defines the total load xs
ij = xj and ys+1

ij = 1, if xj lies on the sub-interval [lsij , ls+1
ij ].

Otherwise, xs
ij = ys+1

ij = 0. In this formulation, at most one ys+1
ij will equal one.



min
∑

j∈N cjxj (12)

f̄i(x) +
∑

j∈H(i)
∑

s∈Š(ij) z
s
ij ≤ 0 i ∈M (13)

zs
ij ≥ gij(xs

ij)− gij(0) s ∈ Š(ij), j ∈ H(i), i ∈M (14)

xj =
∑

s∈S(ij) x
s
ij j ∈ H(i), i ∈M (15)

lsijy
s
ij ≤ xs

ij ≤ ls+1
ij ys

ij s ∈ S(ij), j ∈ H(i), i ∈M (16)∑
s∈S(ij) y

s
ij = 1 i ∈M, j ∈ H(i) (17)

ys
ij ∈ {0, 1} s ∈ S(ij), j ∈ H(i), i ∈M (18)
xj ∈ Z j ∈ I (19)

Again, f̄i = fi(x) +
∑

j∈H(i) gij(0)
∑

s∈Š(ij) y
s
ij +

∑
s∈Ŝ(ij)(αs

ijx
s
ij + (gij(lsij)−αs

ijl
s
ij)ys

ij) is clearly
convex since fi was.

2.3 Convex Combination Model (CCM)

As in the MCM, this formulation considers the variable that xs
ij defines the total load, i.e.,

xs
ij = xj if xj lies on the sub-interval [lsij , ls+1

ij ]. However, the load and its cost are computed
as a convex combination of the load/cost of the two endpoints of the segment. By defining
multipliers µs

ij and λs
ij as the weights of these two endpoints, this yields

min
∑

j∈N cjxj (20)

f̄i(x) +
∑

j∈H(i)
∑

s∈Š(ij) z
s
ij ≤ 0 i ∈M (21)

zs
ij ≥ gij(lsijµs

ij + ls+1
ij λs

ij)− gij(0) s ∈ Š(ij), j ∈ H(i), i ∈M (22)

xj =
∑

s∈S(ij)(lsijµs
ij + ls+1

ij λs
ij) j ∈ H(i), i ∈M (23)

µs
ij + λs

ij = ys
ij s ∈ S(ij), j ∈ H(i), i ∈M (24)∑

s∈S(ij) y
s
ij = 1 i ∈M, j ∈ H(i) (25)

ys
ij ∈ {0, 1} s ∈ S(ij), j ∈ H(i), i ∈M (26)
xj ∈ Z j ∈ I (27)

where f̄i = fi(x) +
∑

j∈H(i) gij(0)
∑

s∈Š(ij)(µs
ij + λs

ij) +
∑

s∈Ŝ(ij)(gij(lsij)µs
ij + gij(ls+1

ij )λs
ij). Note

that writing “gij(0)
∑

s∈Š(ij)(µs
ij + λs

ij)” instead of “gij(0)
∑

s∈Š(ij) y
s
ij” is a bit of a gimmick

that changes nothing, except making the notation little bit more symmetric.

Computional Results

Several real-world applications can be modeled as a problem in the class of (1)-(4), among which
aircraft traffic control problems, uncapacitated facility location problem, unit commitment and
scheduling problem, and, more in general, the non linear knapsack problem. For lack of space,
we focus on the latter and compare the three formulations on a set of 40 instances. All the
instances were solved with BARON 19.7.13.



The non linear knapsack problem is the same considered in [2], i.e.,

max
∑

j∈N pj

pj ≤
cj

1 + bj exp(−aj(xj + dj))
j ∈ N

∑
j∈N xj ≤ C

0 ≤ xj ≤ Uj j ∈ N

For each value of |N | ∈ {10, 20, 50, 100} we randomly generated 10 instances, where aj ∈
[0.1, 0.2], bj ∈ [0, 100], cj ∈ [0, 100], and dj ∈ [−100, 0] were uniformly drawn in the corre-
sponding intervals. We fixed Uj = 100 for all j ∈ N and C = 100|N |/2.

In the following table, we present, for each value of |N |, the average results for the non-convex
MINLP formulation (“Original Solution” in the table) and the three convex MINLP relaxations
presented in the previous sections. For each of the convex MINLP formulations, we present
the objective function of the best solution found within the time limit of 120 seconds both
for the convex MINLP (“Integer” in the table) and its continuous relaxation (“Relax” in the
table). Clearly, the best solution value of the non-convex MINLP problem is smaller than the
solution of the convex MINLP relaxations (which is smaller than the solution of its continuous
relaxation). Note also that the “Integer” values of the three convex MINLP relaxation should
be the same, as they are equivalent formulations. It might not be true when the time limit is
hit, see, for example, for |N | = 50 and |N | = 100.

The most interesting thing to notice is the continuous relaxation value for the three convex
MINLP formulations (“Relax”). In general, the continuous relaxations of MCM and CCM
are equivalent while IM is worse (unless the time limit is reach). However, this does not
always imply better CPU times. We plan to study this aspect more extensively both from a
computational and a theoretical viewpoint.

TAB. 1: Computational results for non linear knapsack problem.
Instance Original Incremental Multiple Choice Convex Combination
Items Solution Integer Relax Integer Relax Integer Relax
10 193.372 196.034 205.313 196.035 201.773 196.035 201.773
20 250.601 251.077 274.085 251.079 259.449 251.079 259.449
50 337.435 337.997 394.567 337.652 344.921 338.001 345.098
100 422.279 422.597 504.163 422.162 429.720 414.255 418.741

Average 299.985 301.001 343.249 300.811 308.044 298.864 305.269
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