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From con�ict-free spanning trees
to �xed cardinality stable sets



Minimum spanning trees under con�ict constraints (MSTCC)

Input

• simple undirected graph G(V, E)
• set C ⊂ E× E of con�icting edge pairs
• edge weights w : E→ Q+

Output: if feasible, a subset T ⊆ E satisfying

• (V, T) is a spanning tree of G
• at most one of edges ei and ej is in T, for each pair (ei, ej) ∈ C
• T has the minimum weight

∑
e∈T w(e) out of all con�ict-free

spanning trees
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MSTCC: de�nition using the con�ict graph Ĝ(E, C)

Feasible solution for the MSTCC problem
Subset of E corresponding simultaneously to a spanning tree of
G(V, E) and a stable set of Ĝ(E, C).

min

{∑
e∈E

w(e)xe : x ∈ Psptree(G) ∩ Pstab(Ĝ) ∩ {0, 1}
|E|

}
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Figure 1: The original graph G and the con�ict graph Ĝ, with a feasible
solution highlighted.
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Fixed cardinality stable sets

Input

• simple undirected graph G(V, E)
• k ∈ Z+

• vertex weights w : V → Q+

Output: if feasible, a subset T ⊆ V satisfying

• T is a stable set of G
• |T| = k
• T has the minimum weight

∑
u∈T w(u) out of all k-stabs in G
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Fixed cardinality stable sets: a gap in the literature

[Bruglieri et al., 2006]
An annotated bibliography of combinatorial optimization problems
with �xed cardinality constraints

Brief appearances

• [Janssen and Kilakos, 1999] for k ∈ {2, 3}
• [Botton, 2010] algorithm for a variant of the survivable network

design problem
• Parameterized extension complexity: [Bazzi et al., 2019],

[Gajarsk et al., 2018], [Buchanan and Butenko, 2014],
[Buchanan, 2016].

[Mannino et al., 2007]
The stable set problem and the thinness of a graph
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Polyhedral results



Our objects

C(G, k) = conv
{
χS ∈ {0, 1}V : S ⊂ V induces a stable set, |S| = k

}

P(G, k) denotes the polyhedral region de�ned by∑
v∈V

xv = k (1)

xu + xv ≤ 1 ∀ {u, v} ∈ E (2)
0 ≤ xv ≤ 1 ∀v ∈ V (3)
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P(G, k) is no longer half-integer

• Recall that a vector z is half-integer if 2z is integer.
(More generally, z is 1

p -integer if pz is integer.)
• [Nemhauser and Trotter, 1974]: the fractional stable set
polytope is half-integer, i.e. all its vertices are

{
0, 1

2 , 1
}

-valued.

Theorem
P(G, k) is not half-integer.

Theorem
For each p ≥ 2 and each k ≥ 2, there exists a graph G such that
P(G, k) is not 1

p -integer.
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Wanted: valid inequalities for C(G, k)

Neighbourhood of S ⊂ V:

N(S) = {u ∈ V\S : ∃ {u, v} ∈ E for some v ∈ S}

Neighbourhood of a vertex v ∈ V:

δ(v) = N({v})

Proposition
If x is the incidence vector of any k-stab, and v ∈ V is such that
|δ(v)| > n− k, then xv = 0.
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Unsuitable neighbourhood inequalities (UNI)

Theorem
For each S ⊂ V such that 1 ≤ |S| < k and |N(S)| > n− k, inequality∑

v∈S xv ≤ |S| − 1 is valid for C(G, k).

Figure 2: G = 2P3 and k = 3

Theorem
For any graph G and k > 1, the UNI imply the condition enforced by
the previous proposition in the description of C(G, k), but the
converse does not hold.
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Unsuitable neighbourhood inequalities (UNI)

Proposition
In either of the following two conditions, the corresponding
unsuitable neighbourhood inequality is redundant in C(G, k):

(i) if S ⊂ V is not independent, or
(ii) if S ⊂ V is not minimal with respect to the condition
|N(S)| > n− k.

UNI and rank inequalities from the classical stable set polytope∑
v∈W

xv ≤ α(G[W]), for W ⊂ V(G)

• α(G[W]) = |W| whenever W is an independent set
• UNI over W:

∑
v∈W xv ≤ |W| − 1
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Towards a branch-and-cut
algorithm



Separation problem for UNI

Given a graph G = (V, E), with n = |V|, k ∈ {2, . . . ,n− 1}, and
x∗ ∈ [0, 1]n satisfying the conditions that

∑
v∈V x∗v = k and that

x∗u + x∗v ≤ 1 for each {u, v} ∈ E, determine

i. either a set S ⊂ V, with 1 ≤ |S| ≤ k− 1 and |N(S)| ≥ n− (k− 1),
such that

∑
v∈S x∗v > |S| − 1, in which case the unsuitable

neighbourhood inequality corresponding to S separates x∗
from C(G, k),

ii. or that no such set exists, in which case all UNI are satis�ed at
x∗.
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Separation problem for UNI, equivalent formulation

Given the input [G, k, x∗] corresponding to the previous de�nition,
de�ne y∗ ∈ [0, 1]n such that y∗v = 1− x∗v .

Then,
∑

v∈S x∗v > |S| − 1 if and only if
∑

v∈S y∗v < 1.

Given a graph G = (V, E), with n = |V|, k ∈ {2, . . . ,n− 1}, and
y∗ ∈ [0, 1]n satisfying the conditions that

∑
v∈V y∗v = n− k and that

y∗u + y∗v ≥ 1 for each {u, v} ∈ E, determine

1. either a set S ⊂ V, with |N(S)| ≥ n− (k− 1) and
∑

v∈S y∗v < 1, in
which case the unsuitable neighbourhood inequality
corresponding to S separates x∗ = 1− y∗ from C(G, k),

2. or that no such set exists, in which case all UNI are satis�ed at
x∗ = 1− y∗.
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Separation problem for UNI, equivalent formulation
If |S| = k − 1, then |N(S)| ≥ n − (k − 1) implies that it would be a
dominating set

• Recall that adjacent vertices have y∗ values summing up to at
least 1

• Since we require
∑

v∈S y∗v < 1, we would actually have an
independent dominating set if |S| = k− 1.

Allowing |S| ≤ k− 1
means that there might be q ∈ {0, 1, . . . , k− 2} vertices neither in S
nor dominated by it.

De�nition
A q-quasi dominating set in a graph G = (V, E) is a subset of vertices
which is dominating in G[V\X], for some X ⊂ V, |X| ≤ q.

Separation problem for UNI
Find a (k− 2)-quasi dominating set of weight at most 1, or decide
that none exists.
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The balanced branching rule of [Balas and Yu, 1986]

On a given node of the enumeration tree

• G′ = (V′, E′) denotes the subgraph induced by vertices not �xed
in this subproblem

• z denotes the best primal bound available.

An “easy piece”W ⊆ V′

• Let W ⊆ V′ be such that we can determine e�ciently that the
minimum weight of a k-stab in the subgraph induced by W,
denoted z(W), is such that z(W) ≥ z.

• If the search on this subtree is to eventually �nd that z(V′) < z,
any bound-improving solution must intersect
V′\W = {v1, . . . , vp}.

Partition the search space into the sets

V′i = {vi}
⋃

V′\ (N(vi) ∪ {vi+1, . . . , vp}) , for 1 ≤ i ≤ p.
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A combinatorial dual bound

Theorem
Let M ⊂ E be any matching in G. De�ne:

• ce = min
{
w(vi),w(vj)

}
for each edge e =

{
vi, vj

}
∈ M

• cu = w(vu) for any vertex vu not covered by the matching M

Then, the sum of the k lowest values in the image of c(·) is a lower
bound on z = min

{∑
v∈V w(v)xv : x ∈ P(G, k) ∩ {0, 1}

n}.

Determine candidate subgraphs W by inspecting, for each
l ∈ {1, . . . , k}

1. A minimum c(·)-weighted matching in G′ with cardinality l
2. A suitable choice of k− l vertices not covered by the matching
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Concluding remarks



Concluding remarks

Polyhedral investigation
Many open questions about C(G, k).

Already for n = 4, the nine non-isomorphic graphs on 4 vertices
(discarding the empty and the complete graphs) give
dimC(G, 2) ∈ {0, 1, 2, 3} and dimC(G, 3) ∈ {−1,0, 1}.

The UNI separation problem and its complexity
Optimizing over subgraphs with a domination-like property and an
additional budget constraint

Balanced branching scheme
Leveraging a modern branch-and-cut solver for the classical stable
set problem towards one for the �xed-cardinality version
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Thank you!
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