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From conflict-free spanning trees
to fixed cardinality stable sets



Minimum spanning trees under conflict constraints (MSTCC)

Input
« simple undirected graph G(V, E)
+ set C C E x E of conflicting edge pairs
- edge weightsw : E — Q.

Output: if feasible, a subset T C E satisfying
+ (V,T)is a spanning tree of G
+ at most one of edges e; and e; is in T, for each pair (e;, ;) € C

* T has the minimum weight ", _; w(e) out of all conflict-free
spanning trees



MSTCC: definition using the conflict graph G(E, C)

Feasible solution for the MSTCC problem
Subset of E corresponding simultaneously to a spanning tree of

G(V, E) and a stable set of G(E, C).
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Figure 1: The original graph G and the conflict graph G, with a feasible
solution highlighted.



Fixed cardinality stable sets

Input
+ simple undirected graph G(V, E)
*ReZ,

* vertex weights w : V — Q.

Output: if feasible, a subset T C V satisfying

« Tis astable set of G
* T has the minimum weight > _, w(u) out of all k-stabs in G



Fixed cardinality stable sets: a gap in the literature

[Bruglieri et al., 2006]
An annotated bibliography of combinatorial optimization problems

with fixed cardinality constraints
Brief appearances

« [Janssen and Kilakos, 1999] for k € {2,3}

- [Botton, 2010] algorithm for a variant of the survivable network
design problem

+ Parameterized extension complexity: [Bazzi et al., 2019],

[Gajarsk et al., 2018], [Buchanan and Butenko, 2014],
[Buchanan, 2016].

[Mannino et al., 2007] _
The stable set problem and the thinness of a graph



Polyhedral results



Our objects

¢(G,R) = conv{x5 € {0,1}" : S c Vinduces a stable set, |S| = k}

P(G, R) denotes the polyhedral region defined by

va =R (1)

veV
Xy + Xy < 1 V{u,v} €E (2)
0<x, <1 VeV (3)



P(G, R) is no longer half-integer

+ Recall that a vector z is half-integer if 2z is integer.
(More generally, z is J-integer if pz is integer.)
+ [Nemhauser and Trotter, 1974]: the fractional stable set

polytope is half-integer, i.e. all its vertices are {0, 1, 1}-valued.

Theorem
P(G, R) is not half-integer.
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Theorem ]
For each p > 2 and each k > 2, there exists a graph G such that

P(G, R) is not S-integer.



Wanted: valid inequalities for ¢(G, R)

Neighbourhood of S C V:

N(S) ={u e V\S:3{u,v} € Eforsomev € S}

Neighbourhood of a vertex v € V:



Wanted: valid inequalities for ¢(G, R)

Neighbourhood of S C V:

N(S) ={u e V\S:3{u,v} € Eforsomev € S}
Neighbourhood of a vertex v € V:
o(v) = N({v})

Proposition ]
If x is the incidence vector of any kR-stab, and v € V is such that

[0(v)| > n — R, then x, = O.



Unsuitable neighbourhood inequalities (UNI)

Theorem
For each S C V such that1 < |S| < k and |[N(S)| > n — R, inequality

> vesXv < |S| — 1is valid for €(G, R).

Figure2: G =2P;and k =3



Unsuitable neighbourhood inequalities (UNI)

Theorem
For each S C V such that1 < |S| < k and |[N(S)| > n — R, inequality

> vesXv < |S| — 1is valid for €(G, R).

Figure 2: G =2P; and k = 3. Then, |§(u)| < n — kR = 3 for each vertex u.

Theorem

For any graph G and k > 1, the UNI imply the condition enforced by
the previous proposition in the description of €(G, R), but the
converse does not hold.



Unsuitable neighbourhood inequalities (UNI)

Proposition ' - '
In either of the following two conditions, the corresponding

unsuitable neighbourhood inequality is redundant in €(G, R):

(i) ifS c Vis not independent, or

(ii) if S c V is not minimal with respect to the condition
IN(S)| > n—k.



Unsuitable neighbourhood inequalities (UNI)

Proposition ' - '
In either of the following two conditions, the corresponding

unsuitable neighbourhood inequality is redundant in €(G, R):

(i) ifS c Vis not independent, or

(ii) if S c V is not minimal with respect to the condition
IN(S)| > n—k.

UNI and rank inequalities from the classical stable set polytope
> xv < a(G[W]), for W C V(G)

veWw

+ a(G[W]) = |W| whenever W is an independent set
* UNlover W: "y xy < [W| —1



Towards a branch-and-cut
algorithm



Separation problem for UNI

Given a graph G = (V,E), withn=|V|, ke {2,...,n — 1}, and
x* € [0,1]" satisfying the conditions that 3 ., x; = kR and that
X + x5 < 1for each {u,v} € E, determine

i. eitherasetS c V,with1<|S|<k—1and|N(S)|>n—(kR—1),
such that >~ . x; > |S| — 1, in which case the unsuitable
neighbourhood inequality corresponding to S separates x*
from ¢(G, R),

ii. or that no such set exists, in which case all UNI are satisfied at
X*.
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Separation problem for UNI, equivalent formulation

Given the input [G, R, x*] corresponding to the previous definition,
define y* € [0,1]" such thaty} =1 —x].

Then, " s Xy > [S| —1ifand only if Y cyy < 1.

1"



Separation problem for UNI, equivalent formulation

Given the input [G, R, x*] corresponding to the previous definition,
define y* € [0,1]" such thaty} =1 —x].

Then, " s Xy > [S| —1ifand only if Y cyy < 1.

Given a graph G = (V,E),withn=|V|, ke {2,...,n — 1}, and
y* € [0,1]" satisfying the conditions that 3 ., vs = n — kand that
Vi +yi > 1for each {u,v} € E, determine

1. eitherasetS c V, with [N(S)| >n—(k—1)and > .y, <1,in
which case the unsuitable neighbourhood inequality
corresponding to S separates x* = 1 — y* from ¢(G, R),

2. or that no such set exists, in which case all UNI are satisfied at
X*=1—-y*

1"



Separation problem for UNI, equivalent formulation

If |S| = k — 1, then [N(S)| > n — (kR — 1) implies that it would be a
dominating set
+ Recall that adjacent vertices have y* values summing up to at
least 1

+ Since we require > .cyy < 1, we would actually have an
independent dominating set if |[S| = R — 1.

Allowing |S| < kR —1

means that there might be g € {0,1,...,k — 2} vertices neitherin S
nor dominated by it.

12



Separation problem for UNI, equivalent formulation

If |S| = k — 1, then [N(S)| > n — (kR — 1) implies that it would be a
dominating set

+ Recall that adjacent vertices have y* values summing up to at
least 1

+ Since we require > .cyy < 1, we would actually have an
independent dominating set if |[S| = R — 1.

Allowing |S| < kR —1
means that there might be g € {0,1,...,k — 2} vertices neitherin S
nor dominated by it.

Definition
A g-quasi dominating set in a graph G = (V, E) is a subset of vertices
which is dominating in G[V\X], for some X C V, |X| < q.

Separation problem for UNI
Find a (k — 2)-quasi dominating set of weight at most 1, or decide

that none exists.
12



The balanced branching rule of [Balas and Yu, 1986]

On a given node of the enumeration tree

« G’ = (V',F’) denotes the subgraph induced by vertices not fixed
in this subproblem

+ Zdenotes the best primal bound available.
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« G’ = (V',F’) denotes the subgraph induced by vertices not fixed
in this subproblem
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An “easy piece” W C V'

« Let W C V’ be such that we can determine efficiently that the
minimum weight of a k-stab in the subgraph induced by W,
denoted z(W), is such that z(W) > z.
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The balanced branching rule of [Balas and Yu, 1986]

On a given node of the enumeration tree
« G’ = (V',F’) denotes the subgraph induced by vertices not fixed
in this subproblem
+ Zdenotes the best primal bound available.

An “easy piece” W C V'

« Let W C V’ be such that we can determine efficiently that the
minimum weight of a k-stab in the subgraph induced by W,
denoted z(W), is such that z(W) > z.

« If the search on this subtree is to eventually find that z(V') < Z,
any bound-improving solution must intersect
VAW = {vq,...,Vp}.

Partition the search space into the sets

= {vi} [J V\(N(V)) U {Viss,...,vp}), fora<i<p. »



A combinatorial dual bound

Theorem o
Let M C E be any matching in G. Define:

* Ce = min {w(v;),w(v))} for each edge e = {v;,v;} e M
« ¢, = w(vy) for any vertex v, not covered by the matching M

Then, the sum of the k lowest values in the image of c(-) is a lower
bound on z = min {3, w(vV)x, : X € P(G,kR) N {o0,1}"}.
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A combinatorial dual bound

Theorem o
Let M C E be any matching in G. Define:

* Ce = min {w(v;),w(v))} for each edge e = {v;,v;} e M
« ¢, = w(vy) for any vertex v, not covered by the matching M

Then, the sum of the k lowest values in the image of c(-) is a lower
bound on z = min {3, w(vV)x, : X € P(G,kR) N {o0,1}"}.

Determine candidate subgraphs W by inspecting, for each
le{1,..., R}

1. A minimum c(-)-weighted matching in G’ with cardinality [

2. A suitable choice of k — [ vertices not covered by the matching
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Concluding remarks




Concluding remarks

Polyhedral investigation

Many open questions about €(G, R).

Already for n = 4, the nine non-isomorphic graphs on 4 vertices
(discarding the empty and the complete graphs) give
dim¢(G,2) € {0,1,2,3} and dim &(G, 3) € {—1,0,1}.

The UNI separation problem and its complexity
Optimizing over subgraphs with a domination-like property and an

additional budget constraint

Balanced branching scheme
Leveraging a modern branch-and-cut solver for the classical stable

set problem towards one for the fixed-cardinality version

15



Thank you!
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