# A cycle-based formulation for the Distance Geometry Problem

#### Leo Liberti<sup>1</sup>, **Gabriele Iommazzo**<sup>1,2</sup>, Carlile Lavor<sup>3</sup>, Nelson Maculan<sup>4</sup>

<sup>1</sup>DASCIM Team, LIX CNRS, Ecole Polytechnique, IPP, Palaiseau, France

<sup>2</sup>Operations Research Group, Dip. di Informatica, Università di Pisa, Italy

<sup>3</sup>IMECC, University of Campinas, Brazil

<sup>4</sup>COPPE, Federal University of Rio de Janeiro (UFRJ), Brazil

CTW 2020, September 14-16, 2020

## Outline



Our cycle-based formulation



# Distance Geometry Problem (DGP)

#### Definition (DGP)

Given: simple undirected weighted graph G = (V, E, d) and  $K \in \mathbb{N}_{>0}$ , find *realization* of vertices  $x : V \longrightarrow \mathbb{R}^{K}$  s.t.

$$\forall \{i, j\} \in E \quad ||x_i - x_j|| = d_{ij} , \qquad (1)$$

## Complexity [Beeker et al., 2013, Saxe, 1979]

- DGP<sub>1</sub>: in NP + NP-complete;
- DGP<sub>>1</sub> (general graphs): may not be in NP;
- DGP on simple cycle graphs: weakly NP-hard;
- DGP with d(·) ∈ {1,2} (general graphs): strongly NP-hard;



Figure: Complexity classes

# Euclidean DGP (EDGP)

EDGP (parametrised over  $\ell_2$ -norm): find  $x : V \longrightarrow \mathbb{R}^K$  s.t.

$$\forall \{i, j\} \in E \quad \|x_i - x_j\|_2^2 = d_{ij}^2$$
(2)

#### Applications

- clock synchronization (K = 1) [Singer, 2011];
- sensor network localization (K = 2) [Aspnes et al., 2006];
- molecular DGP (K = 3) [Lavor et al., 2009];
- . . .

# Solving EDGP: edge formulation

$$\min_{x} \sum_{\{i,j\}\in E} (\|x_i - x_j\|_2^2 - d_{ij}^2)^2$$
(3)

- unconstrained, nonconvex, multimodal polynomial minimization problem;
- to overcome complexity: a) reformulations (l<sub>1</sub>-norm, constrained form, linearize, ...); b) local solvers; c) heuristic approaches

## Solving EDGP: edge formulation

$$\min_{x} \sum_{\{i,j\}\in E} (\|x_i - x_j\|_2^2 - d_{ij}^2)^2$$
(3)

- unconstrained, nonconvex, multimodal polynomial minimization problem;
- to overcome complexity: a) reformulations (l<sub>1</sub>-norm, constrained form, linearize, ...); b) local solvers; c) heuristic approaches
- optimal solution x<sup>\*</sup> is realization of given G ⇐⇒ value of x<sup>\*</sup> is zero (glob. min);

# Solving EDGP: edge formulation

$$\min_{x} \sum_{\{i,j\}\in E} (\|x_i - x_j\|_2^2 - d_{ij}^2)^2$$
(3)

- unconstrained, nonconvex, multimodal polynomial minimization problem;
- to overcome complexity: a) reformulations (l<sub>1</sub>-norm, constrained form, linearize, ...); b) local solvers; c) heuristic approaches
- optimal solution x<sup>\*</sup> is realization of given G ←→ value of x<sup>\*</sup> is zero (glob. min);

## Cycle-based formulation: stemming idea

#### Lemma

Given  $K \in \mathbb{N}^+$ , a simple undirected weighted graph G = (V, E, d)and  $x : V \longrightarrow \mathbb{R}^K$ , then for each cycle C in G, each orientation of edges in C given by closed trail W(C), and each  $k \leq K$ :

$$\sum_{i,j)\in\mathcal{W}(C)}(x_{ik}-x_{jk})=0$$
(4)

Used in [Saxe, 1979] to prove weak NP hardness of DGP on simple cycle graphs

## Cycle-based formulation: stemming idea (proof)



## Cycle-based formulation: stemming idea (proof)



## Cycle-based formulation: variables and constraints I

new decision variables:

$$\mathbf{y}_{ijk} = \mathbf{x}_{ik} - \mathbf{x}_{jk} \quad \forall k \le K, \ \{i, j\} \in E \tag{5}$$

bounds on the decision variables

$$\forall k \leq K, \ \{i, j\} \in E \quad -d_{ij} \leq y_{ijk} \leq d_{ij} \tag{6}$$

## Cycle-based formulation: variables and constraints II

• EDGP Eq. (2) becomes the following set of constraints:

$$\forall \{i,j\} \in E \quad \sum_{k \le K} y_{ijk}^2 = d_{ij}^2 \tag{7}$$

constraints on cycles

$$\forall k \leq K, \ C \subset G \ (C \text{ is a cycle} \implies \sum_{\{i,j\} \in E} y_{ijk} = 0)$$
(8)

## Cycle-based formulation: main theorem

#### Theorem

 $\exists$  a vector  $y^* \in \mathbb{R}^{Km}$  which satisfies Eq. (7) and (8), parametrized on  $(K, G) \iff (K, G)$  is a YES instance of the EDGP.

• ergo: find  $y^* \longrightarrow$  any solution  $x^*$  of

$$\forall k \leq K, \{i, j\} \in E \quad x_{ik} - x_{jk} = y_{ijk}^* \tag{9}$$

#### is valid realization of (K, G)

 issue: solving (7)–(8) is NP-hard: exponentially many constraints because of "C ⊂ G"

## Cycle-based formulation: main theorem

#### Theorem

 $\exists$  a vector  $y^* \in \mathbb{R}^{Km}$  which satisfies Eq. (7) and (8), parametrized on  $(K, G) \iff (K, G)$  is a YES instance of the EDGP.

• ergo: find  $y^* \longrightarrow$  any solution  $x^*$  of

$$\forall k \leq K, \{i, j\} \in E \quad x_{ik} - x_{jk} = y_{ijk}^* \tag{9}$$

is valid realization of (K, G)

issue: solving (7)–(8) is NP-hard: exponentially many constraints because of "C ⊂ G"

# Cycle-based formulation: main theorem (proof of $\Leftarrow$ )

#### G has realization $x^*$

• 
$$\forall k \leq K, \{i,j\} \in E, y_{ijk} = \mathbf{x}_{ik}^* - \mathbf{x}_{jk}^*$$

$$\implies y^*$$
•  $\forall k \leq K, \{i,j\} \in E, \ y^*_{ijk} = x^*_{ik} - x^*_{jk}$ 
(5)

# Cycle-based formulation: main theorem (proof of $\Leftarrow$ )

#### G has realization $x^*$

• 
$$\forall k \leq K, \{i,j\} \in E, y_{ijk} = x_{ik}^* - x_{jk}^*$$

• 
$$\forall \{i, j\} \in E, \ \|\mathbf{x}_i^* - \mathbf{x}_j^*\|_2^2 = d_{ij}^2$$

$$\implies y^*$$
•  $\forall k \leq K, \{i, j\} \in E, y^*_{ijk} = x^*_{ik} - x^*_{jk}$ 
•  $\forall \{i, j\} \in E, \sum_{k \leq K} (y^*_{ijk})^2 = d^2_{ij}$ 
(5)
(7)

(2)

# Cycle-based formulation: main theorem (proof of $\Leftarrow$ )

| G has realization $x^*$                                                                                 |         |
|---------------------------------------------------------------------------------------------------------|---------|
| • $\forall k \leq K, \ \{i,j\} \in E, \ y_{ijk} = \mathbf{x}^*_{ik} - \mathbf{x}^*_{jk}$                |         |
| • $\forall \{i, j\} \in E, \ \ \mathbf{x}_i^* - \mathbf{x}_j^*\ _2^2 = d_{ij}^2$                        | (2)     |
| • $\forall k \leq K, \ C \subset G, \ \sum_{\{i,j\} \in E} (\mathbf{x}^*_{ik} - \mathbf{x}^*_{jk}) = 0$ | (Lemma) |

#### $\implies y^*$

• 
$$\forall k \leq K, \ \{i, j\} \in E, \ y_{ijk}^* = x_{ik}^* - x_{jk}^*$$
 (5)

• 
$$\forall \{i, j\} \in E, \ \sum_{k \le K} (y_{ijk}^*)^2 = d_{ij}^2$$
 (7)

• 
$$\forall k \leq K, \ C \subset G, \ (C \text{ is a cycle} \implies \sum_{\{i,j\} \in E} y^*_{ijk} = 0)$$
 (8)

# Cycle-based formulation: main theorem (proof of $\implies$ )

#### Use

- tree: connected + no cycles
- biconnected graph: connected + no cut vertices



# Cycle-based formulation: main theorem (proof of $\implies$ )

#### Use

- tree: connected + no cycles
- biconnected graph: connected + no cut vertices



# Cycle-based formulation: main theorem (proof of $\implies$ )

Use

- tree: connected + no cycles
- biconnected graph: connected + no cut vertices

# Cycle-based formulation: main theorem (proof of $\implies$ )

#### 1-DECOMPOSITION of G = (V, E)

Set of subgraphs  $G_1, \ldots, G_r$ ,  $r \in \mathbb{N}_{>0}$ :

• 
$$G_i$$
 biconnected or tree  $i \leq r$ 

$$\bigcup_{i\leq r} E(G_i) = E$$

• for any 
$$i < j \le r$$
,  $V(G_i) \cap V(G_j)$  is  $\emptyset$  or a cut vertex of  $G$ 

# Cycle-based formulation: main theorem (proof of $\implies$ )

#### 1-DECOMPOSITION of G = (V, E)

Set of subgraphs  $G_1, \ldots, G_r$ ,  $r \in \mathbb{N}_{>0}$ :

•  $G_i$  biconnected or tree  $i \leq r$ 

• for any  $i < j \le r$ ,  $V(G_i) \cap V(G_j)$  is  $\emptyset$  or a cut vertex of G



# Cycle-based formulation: enter cycle bases [Kavitha et al., 2009]

Problematic constraints

$$\forall k \leq K, \ C \subset G \ (C \text{ is a cycle} \implies \sum_{\{i,j\} \in E} y_{ijk} = 0)$$
 (8)

BUT ...

...incidence vectors of cycles (in Euclidean space of dimension |E|) form vector space over field  $\mathbb{F}$ SO ...

... use cycle bases  $\implies \forall C$ : weighted sum of cycles in basis  $\mathcal{B}$ 

## Cycle-based formulation: enter cycle bases

#### Easier constraints

 $\forall k \leq K, \ \forall B \in \mathcal{B} \quad \dots$ 

#### BUT ...

... incidence vectors of cycles (in Euclidean space of dimension |E|) form vector space over field  $\mathbb{F}$ SO ...

... use cycle bases  $\implies \forall C$ : weighted sum of cycles in basis  $\mathcal{B}$ 

# Cycle bases [Kavitha et al., 2009]



# Cycle bases [Kavitha et al., 2009]

Each cycle encoded by a vector in  $c \in \mathbb{Z}_2^m$ , m = |E|



# Cycle bases [Kavitha et al., 2009]



- node degree is even
- vector space does not depend on orientation of G
- cases of interest:  $\mathbb{Z}_2^m$ ,  $\mathbb{Q}^m$

## Cycle-based formulation: rewriting Eqs. (8)

- direct edges in  $E \longrightarrow$  directed simple graph  $\overline{G}(V, A)$
- $c^{\overline{c}} \in \mathbb{R}^m$ : incidence vector of directed cycle  $\overline{C} \in \overline{G}$ ;  $c^{\overline{c}} \in \{0, 1, -1\}$  if  $\overline{C}$  is circuit;

$$\sum_{(u,v)\in A} c_{uv}^{\bar{C}} = \sum_{(v,w)\in A} c_{vw}^{\bar{C}}$$

Proposition

Let  $\mathcal{B}$  directed cycle basis of  $\overline{G}$  over  $\mathbb{Q}$ . Eq. (8) holds  $\iff$ 

$$\forall k \leq K, \ \forall \boldsymbol{B} \in \boldsymbol{\mathcal{B}} \quad \sum_{(i,j) \in \mathcal{A}(B)} c_{ij}^{B} y_{ijk} = 0 \tag{10}$$

# Cycle-based formulation: rewriting Eq. (8) (proof)



# Cycle-based formulation: rewriting Eq. (8) (proof)

$$( \Leftarrow )$$
  
 $\overline{\bar{C}} \subset \bar{G} : \quad c^{\bar{C}} = \sum_{B \in \mathcal{B}} \gamma_B c^B$ 



 $\implies$ 

 $C \in \mathcal{B}$ 

 $C \subset G$ 

# Cycle-based formulation: rewriting Eq. (8) (proof)

$$( \Leftarrow )$$

$$\overline{\overline{C}} \subset \overline{G} : \quad c^{\overline{C}} = \sum_{B \in \mathcal{B}} \gamma_B c^B$$

$$\forall k \leq K : \qquad \sum_{B \in \mathcal{B}} \gamma_B \sum_{(i,j) \in \mathcal{A}(B)} c^B_{ij} y_{ijk}$$

 $( \cdot )$ 

# Cycle-based formulation: rewriting Eq. (8) (proof)

$$ar{\mathcal{C}} \subset ar{\mathcal{G}}: \quad c^{ar{\mathcal{C}}} = \sum_{B \in \mathcal{B}} \gamma_B c^B$$

( = )



$$\forall k \leq K : \quad \mathbf{0} = \sum_{B \in \mathcal{B}} \gamma_B \sum_{(i,j) \in \mathcal{A}(B)} c_{ij}^B y_{ijk}$$

# Cycle-based formulation: rewriting Eq. (8) (proof)

$$\bar{C} \subset \bar{G}: \quad c^{\bar{C}} = \sum_{B \in \mathcal{B}} \gamma_B c^B$$

( ⇐ )



$$\forall k \leq \mathcal{K} : \quad \mathbf{0} = \boxed{\sum_{B \in \mathcal{B}} \gamma_B \sum_{(i,j) \in \mathcal{A}(B)} c_{ij}^B y_{ijk}} \\ = \sum_{(i,j) \in \mathcal{A}(\bar{C})} c_{ij}^{\bar{C}} y_{ijk}$$

# Cycle-based formulation: rewriting Eq. (8) (proof)

$$ar{\mathcal{C}} \subset ar{\mathcal{G}}: \quad c^{ar{\mathcal{C}}} = \sum_{B \in \mathcal{B}} \gamma_B c^B$$

( = )



$$\forall k \leq K : \quad \mathbf{0} = \boxed{\sum_{B \in \mathcal{B}} \gamma_B \sum_{(i,j) \in \mathcal{A}(B)} c^B_{ij} y_{ijk}} = \sum_{\substack{(i,j) \in \mathcal{A}(\bar{C})}} c^{\bar{C}}_{ij} y_{ijk}$$

$$\forall k \leq K : \quad \sum_{\{i,j\} \in E(C)} y_{ijk} = 0$$

## Cycle-based formulation: final make-over

Valid formulation for EDGP:

$$\begin{array}{ccc} \min_{s \ge 0, y} & \sum_{\{i,j\} \in E} (s_{ij}^+ + s_{ij}^-) \\ \forall (i,j) \in \mathcal{A}(\bar{G}) & \sum_{k \le K} y_{ijk}^2 - d_{ij}^2 = s_{ij}^+ - s_{ij}^- \\ \forall k \le K, \ B \in \mathcal{B} & \sum_{(i,j) \in \mathcal{A}(B)} c_{ij}^B y_{ijk} = 0 \end{array} \right\}$$

$$(11)$$

## Bonus: how to find directed cycle basis in $\ensuremath{\mathbb{Q}}$

- can be obtained from undirected cycle basis of G: use directions in G
   [Kavitha et al., 2009];
- algorithm used to find *Fundamental Cycle Basis* [Paton, 1969]:
  - find spanning tree;
  - Pick m n + 1 circuits that each nontree (chord) edge defines with tree

## Results

#### cycle-based formulation

$$\begin{array}{c} \min_{s \ge 0, \ y} & \sum_{\{i,j\} \in \mathcal{E}} (s_{ij}^+ + s_{ij}^-) \\ \forall (i,j) \in \mathcal{A}(\bar{G}) & \sum_{k \le \mathcal{K}} y_{ijk}^2 - d_{ij}^2 = s_{ij}^+ - s_{ij}^- \\ \forall k \le \mathcal{K}, \ B \in \mathcal{B} & \sum_{(i,j) \in \mathcal{A}(\mathcal{B})} c_{ij}^{\mathcal{B}} y_{ijk} = 0 \end{array} \right\}$$

## Results

#### cycle-based formulation

$$\begin{array}{c} \min_{s \ge 0, \ y} & \sum_{\{i,j\} \in E} (s_{ij}^+ + s_{ij}^-) \\ \forall (i,j) \in \mathcal{A}(\bar{G}) & \sum_{k \le K} y_{ijk}^2 - d_{ij}^2 = s_{ij}^+ - s_{ij}^- \\ \forall k \le K, \ B \in \mathcal{B} & \sum_{(i,j) \in \mathcal{A}(B)} c_{ij}^B y_{ijk} = 0 \end{array}$$

#### edge-based formulation

$$\begin{array}{l} \min_{x} \quad \sum_{\{i,j\}\in E} (\|x_i - x_j\|_2^2 - d_{ij}^2)^2 \\ \forall k \leq K \quad \sum_{i \leq n} x_{ik} = 0 \end{array} \right\}$$

### Results

- 3-iteration multi-start: at each iteration a) call local NLP IpOpt solver from random starting point; b) update best incumbent solution
- formulations/heuristics implemented in AMPL
- Computed measures:
  - $MDE(x, G) = \frac{1}{|E|} |||x_i x_j||_2 d_{ij}|$  (average error)
  - $LDE(x, G) = \max_{\{i,j\}\in E} ||x_i x_j||_2 d_{ij}| \text{ (max error)}$
  - CPU time

## Results: cycle formulation vs. edge formulation on proteins



Figure: Deoxyhemoglobin (red blood cells)

## Results: cycle formulation vs. edge formulation on proteins

| Instance        | т     | п    | mdeC  | mdeE  | ldeC  | ldeE  | cpuC     | cpuE     |
|-----------------|-------|------|-------|-------|-------|-------|----------|----------|
| 1guu            | 955   | 150  | 0.057 | 0.061 | 1.913 | 1.884 | 18.18    | 37.14    |
| 1guu-1          | 959   | 150  | 0.035 | 0.038 | 2.025 | 1.824 | 24.27    | 5.48     |
| 1guu-4000       | 968   | 150  | 0.061 | 0.060 | 2.324 | 2.121 | 24.24    | 6.97     |
| pept            | 999   | 107  | 0.104 | 0.161 | 3.367 | 2.963 | 34.67    | 10.89    |
| 2kxa            | 2711  | 177  | 0.053 | 0.155 | 3.613 | 3.936 | 169.95   | 35.44    |
| res_2kxa        | 2627  | 177  | 0.131 | 0.045 | 3.197 | 3.442 | 153.00   | 32.40    |
| C0030pkl        | 3247  | 198  | 0.009 | 0.059 | 2.761 | 3.965 | 156.09   | 76.58    |
| cassioli-130731 | 4871  | 281  | 0.005 | 0.060 | 3.447 | 3.963 | 376.33   | 143.31   |
| 100d            | 5741  | 488  | 0.146 | 0.246 | 4.295 | 4.090 | 3024.67  | 253.56   |
| helix_amber     | 6265  | 392  | 0.038 | 0.059 | 3.528 | 4.578 | 1573.10  | 212.68   |
| water           | 11939 | 648  | 0.222 | 0.422 | 4.557 | 4.322 | 9384.08  | 3836.23  |
| 3al1            | 17417 | 678  | 0.084 | 0.124 | 4.165 | 4.087 | 4785.91  | 1467.74  |
| 1hpv            | 18512 | 1629 | 0.334 | 0.338 | 4.256 | 4.619 | 53848.33 | 6620.70  |
| il2             | 45251 | 2084 | 1.481 | 0.248 | 9.510 | 4.415 | 2323.90  | 24321.25 |

Table: Performance on protein graphs (K = 3)

## Results: cycle formulation vs. edge formulation

| Instance         | т     | п   | mdeC  | mdeE  | IdeC  | ldeE  | cpuC    | cpuE  |
|------------------|-------|-----|-------|-------|-------|-------|---------|-------|
| almostreg-3-100  | 298   | 100 | 0     | 0     | 0.048 | 0.041 | 0.88    | 0.23  |
| almostreg-3-150  | 448   | 150 | 0     | 0     | 0.330 | 0.282 | 1.29    | 0.30  |
| almostreg-3-200  | 598   | 200 | 0     | 0     | 0.030 | 0.020 | 2.15    | 0.44  |
| almostreg-3-50   | 146   | 50  | 0     | 0     | 0     | 0     | 0.31    | 0.11  |
| almostreg-6-100  | 591   | 100 | 0.077 | 0.093 | 0.740 | 0.410 | 6.85    | 0.35  |
| almostreg-6-150  | 893   | 150 | 0.085 | 0.099 | 1.030 | 0.485 | 16.52   | 0.68  |
| almostreg-6-200  | 1192  | 200 | 0.076 | 0.098 | 0.729 | 0.501 | 34.07   | 1.35  |
| almostreg-6-50   | 292   | 50  | 0.082 | 0.099 | 0.648 | 0.471 | 1.80    | 0.13  |
| almostreg-8-100  | 777   | 100 | 0.105 | 0.131 | 0.846 | 0.577 | 8.89    | 0.42  |
| almostreg-8-150  | 1189  | 150 | 0.104 | 0.121 | 0.805 | 0.528 | 34.84   | 0.83  |
| almostreg-8-200  | 1581  | 200 | 0.104 | 0.125 | 0.974 | 0.654 | 48.10   | 1.79  |
| almostreg-8-50   | 387   | 50  | 0.104 | 0.113 | 0.670 | 0.520 | 2.46    | 0.13  |
| bipartite-100-03 | 3044  | 200 | 0.206 | 0.218 | 0.931 | 0.790 | 209.15  | 7.86  |
| bipartite-100-06 | 6024  | 200 | 0.225 | 0.234 | 0.978 | 0.753 | 439.74  | 8.00  |
| bipartite-150-03 | 6708  | 300 | 0.220 | 0.232 | 0.951 | 0.724 | 582.71  | 14.37 |
| bipartite-150-06 | 13466 | 300 | 0.231 | 0.240 | 0.852 | 0.808 | 1904.18 | 30.79 |
| bipartite-200-03 | 11906 | 400 | 0.223 | 0.235 | 0.936 | 0.812 | 3183.43 | 33.06 |
| bipartite-200-06 | 23963 | 400 | 0.235 | 0.244 | 0.888 | 0.741 | 4885.52 | 64.03 |
| bipartite-50-03  | 744   | 100 | 0.166 | 0.185 | 0.936 | 0.787 | 29.27   | 1.11  |
| bipartite-50-06  | 1468  | 100 | 0.201 | 0.217 | 1.011 | 0.754 | 80.80   | 1.38  |
|                  |       |     |       |       |       |       |         |       |

#### Table: Performance on small sized graphs (K = 2)

### Results: cycle formulation vs. edge formulation

| Instance            | m     | п    | mdeC  | mdeE  | ldeC  | ldeE  | cpuC    | cpuE   |
|---------------------|-------|------|-------|-------|-------|-------|---------|--------|
| cluster-120-4-05-01 | 1495  | 120  | 0.191 | 0.206 | 0.873 | 0.838 | 98.67   | 1.69   |
| cluster-120-8-05-01 | 1149  | 120  | 0.181 | 0.196 | 0.892 | 0.740 | 62.29   | 1.04   |
| cluster-150-2-05-01 | 3337  | 150  | 0.218 | 0.230 | 0.901 | 0.936 | 605.00  | 3.66   |
| cluster-150-8-05-01 | 1750  | 150  | 0.190 | 0.205 | 0.886 | 0.831 | 70.66   | 2.44   |
| cluster-200-2-05-01 | 5957  | 200  | 0.231 | 0.241 | 0.931 | 0.952 | 612.82  | 8.01   |
| cluster-200-4-05-01 | 4155  | 200  | 0.221 | 0.233 | 0.924 | 0.906 | 397.45  | 7.67   |
| cluster-200-8-05-01 | 3046  | 200  | 0.206 | 0.220 | 0.988 | 0.851 | 462.46  | 5.61   |
| cluster-50-2-05-01  | 361   | 50   | 0.159 | 0.171 | 0.742 | 0.679 | 7.52    | 0.20   |
| cluster-50-4-05-01  | 242   | 50   | 0.145 | 0.167 | 0.899 | 0.588 | 3.63    | 0.18   |
| cluster-50-8-05-01  | 187   | 50   | 0.113 | 0.133 | 0.716 | 0.500 | 2.73    | 0.16   |
| euclid-150-02       | 2341  | 150  | 0     | 0     | 0     | 0     | 286.09  | 2.69   |
| euclid-150-05       | 5678  | 150  | 0     | 0     | 0     | 0     | 991.87  | 2.86   |
| euclid-150-08       | 8915  | 150  | 0     | 0     | 0     | 0     | 1507.94 | 3.88   |
| euclid-200-05       | 10037 | 200  | 0     | 0     | 0     | 0     | 1881.40 | 5.47   |
| euclid-200-08       | 15877 | 200  | 0     | 0     | 0     | 0     | 3114.95 | 7.96   |
| flowersnark120      | 720   | 480  | 0     | 0     | 0.151 | 0.109 | 7.86    | 8.21   |
| flowersnark-150     | 900   | 600  | 0     | 0     | 0.101 | 0.086 | 36.53   | 15.50  |
| flowersnark-200     | 1200  | 800  | 0     | 0     | 0.141 | 0.123 | 18.02   | 31.04  |
| flowersnark40       | 240   | 160  | 0     | 0     | 0.016 | 0.005 | 1.92    | 0.35   |
| flowersnark80       | 480   | 320  | 0     | 0     | 0.068 | 0.059 | 3.18    | 1.08   |
| hypercube-10        | 5120  | 1024 | 0.128 | 0.152 | 1.004 | 0.653 | 4965.30 | 133.93 |
| hypercube-5         | 80    | 32   | 0.054 | 0.058 | 0.401 | 0.321 | 0.95    | 0.10   |
| hypercube-6         | 192   | 64   | 0.075 | 0.087 | 0.774 | 0.426 | 4.20    | 0.20   |
| hypercube-8         | 1024  | 256  | 0.104 | 0.127 | 0.876 | 0.631 | 81.68   | 2.59   |

Table: Performance on small sized graphs (K = 2)

## Results: cycle formulation vs. edge formulation

|                   |       |     |       |       |       |       | -       |       |
|-------------------|-------|-----|-------|-------|-------|-------|---------|-------|
| Instance          | т     | n   | mdeC  | mdeE  | IdeC  | ldeE  | cpuC    | cpuE  |
| powerlaw-100-2-05 | 148   | 100 | 0.024 | 0.025 | 0.338 | 0.309 | 1.24    | 0.38  |
| powerlaw-100-2-08 | 178   | 100 | 0.042 | 0.042 | 0.464 | 0.398 | 1.64    | 0.59  |
| powerlaw-150-2-05 | 223   | 150 | 0.034 | 0.035 | 0.404 | 0.360 | 1.37    | 1.94  |
| powerlaw-150-2-08 | 268   | 150 | 0.047 | 0.047 | 0.471 | 0.404 | 2.44    | 1.73  |
| powerlaw-200-2-05 | 298   | 200 | 0.025 | 0.026 | 0.581 | 0.443 | 2.64    | 1.27  |
| powerlaw-200-2-08 | 358   | 200 | 0.037 | 0.038 | 0.454 | 0.376 | 3.75    | 1.78  |
| random-100-02     | 1093  | 100 | 0.193 | 0.203 | 0.874 | 0.742 | 48.43   | 0.67  |
| random-100-05     | 2479  | 100 | 0.224 | 0.234 | 0.938 | 0.855 | 168.40  | 1.48  |
| random-150-02     | 2394  | 150 | 0.209 | 0.223 | 0.932 | 0.809 | 226.60  | 3.98  |
| random-150-05     | 5675  | 150 | 0.241 | 0.250 | 0.965 | 0.953 | 580.59  | 6.10  |
| random-200-02     | 4097  | 200 | 0.218 | 0.228 | 0.930 | 0.887 | 271.94  | 7.68  |
| random-200-05     | 10023 | 200 | 0.248 | 0.255 | 0.949 | 0.952 | 1024.32 | 11.43 |
| random-50-02      | 291   | 50  | 0.143 | 0.161 | 0.922 | 0.638 | 7.03    | 0.17  |
| random-50-05      | 665   | 50  | 0.195 | 0.212 | 0.836 | 0.953 | 16.20   | 0.23  |
| rnddegdist-100    | 2252  | 100 | 0.223 | 0.235 | 0.929 | 0.963 | 136.74  | 1.48  |
| rnddegdist-150    | 5293  | 150 | 0.240 | 0.249 | 0.939 | 0.955 | 819.86  | 3.91  |
| rnddegdist-30     | 174   | 30  | 0.156 | 0.179 | 0.767 | 0.667 | 2.26    | 0.11  |
| rnddegdist-40     | 221   | 40  | 0.156 | 0.175 | 0.672 | 0.628 | 2.93    | 0.17  |
| tripartite-100-02 | 4038  | 300 | 0.198 | 0.213 | 0.968 | 0.737 | 369.77  | 10.39 |
| tripartite-100-05 | 10003 | 300 | 0.227 | 0.238 | 0.917 | 0.729 | 1150.35 | 21.37 |
| tripartite-150-02 | 9061  | 450 | 0.213 | 0.227 | 0.956 | 0.765 | 2005.30 | 32.43 |
| tripartite-150-05 | 22431 | 450 | 0.235 | 0.245 | 0.876 | 0.751 | 4687.28 | 45.27 |
| tripartite-30-02  | 359   | 90  | 0.106 | 0.118 | 0.736 | 0.547 | 10.31   | 0.37  |
| tripartite-50-02  | 995   | 150 | 0.153 | 0.173 | 0.958 | 0.722 | 38.55   | 1.00  |
| tripartite-50-05  | 2519  | 150 | 0.208 | 0.220 | 0.849 | 0.736 | 160.43  | 2.39  |

Table: Performance on small sized graphs (K = 2)

