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Introduction

Introduction

e A hypergraph H = (V,E) is given by a vertex set V and a
set E={e:eC V}.

e H is k-uniform if |e| = k for every edge e € E.

@ A hypergraph is simple if it has no loops (edges with |e| = 1)
and if given any pair of edges, no edge contains the other.
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Introduction

Let G be a graph and s > 1 an integer.
The s-extension G5 of G is a 2s-uniform hypergraph obtained
from G by replacing each vertex v; € V for a set

Sy, ={vi1,...,Vis} of s vertices, where S,, N S, = () for every
Vi # V.
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Example: G and Gy

More precisely, V(Gs) = {vi1,.-.,Vis,--«, Vnl,..., Vns} and
E(Gs) ={S,US,, :{vi,v} € E}.
Note that |V(Gs)| = s-|V(G)| and |E(Gs)| = |E(G)|.

Lucas L. S. Portugal Renata R. Del-Vecchio Simone Dantas



Introduction

Let s > 1 and k > 2s be two integers and consider a graph G.
The generalized power graph G is the k-uniform hypergraph

(Gs)¥, obtained by adding k — 2s new vertices to each edge of G;,
called additional vertices.
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Example: G, and (62)6

Note that |V(GX)| =s - |V(G)| + (k — 2s) - |E(G)| and
[E(GH)| = |E(G).
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Remark:
@ When s = 1 we have that G; = G.
o When k = 2s we have that G¥ = G

o The case where GX = G (ie, s = 1 and k = 2s) will not be
considered.

o If G is a simple graph then GX is a simple hypergraph. We
will always consider G simple and with at least one edge.
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Introduction

Let H be a hypergraph with n vertices.

The adjacency matrix of H, denoted by A(H) is the n x n
symmetric matrix:

aj=|{e€ E(H):vj,vjce}l

We denote the eigenvalues of A(H) as A\1(H) > ... > As(H).
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Introduction

@ We study the behavior of hypergraphs parameters on the class
GX and their relation with the respective parameters of the
original graph G, spectral properties given by the adjacency
matrix and establish relations between spectral and structural
parameters.
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Diameter

A path P in a hypergraph H is a vertex-edge alternating sequence:
P=w, e, vi, €&, ..., V,_1, €, V, such that vy, v1,..., Vv, are
distinct vertices; e1, e, ..., e, are distinct edges; and v;_1,Vv; € ¢;,
i=1,2,...,r. The length of a path P is the number of distinct
edges. A hypergraph is connected if for any pair of vertices, there
is a path which connects them.

The distance d(v, u) between two vertices v and u of a connected
hypergraph is the minimum length of a path that connects v and
u. The diameter d(H) of H is defined by

d(H) = max{d(v,u) : v,u € V}.

o G is connected if and only if GX is connected.
e d(Gs) =d(G).
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Proposition

d(G) < d(GK) < d(G) + 2 for any connected graph G.
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Hypergraph Coloring

A hypergraph coloring is an assigning of colors {1,2,...,c} to
each vertex of V(H) in such a way that each edge contains at least
two vertices of distinct colors.

A coloring using at most ¢ colors is called a c-coloring.

The chromatic number x(H) of a hypergraph H is the least
integer ¢ such that H has a c-coloring.
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Remark:
o Given a graph G we have that x(GX) = 2.

e A hypergraph H = (V, E) is bipartite if its vertex set V can
be partitioned into two sets, X and Y such that for every
edgeec E,enX #0PandenY #10.

@ A hypergraph H is bipartite if and only if H is 2—colorable.

o GX is bipartite for any graph G.
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Another type of coloring (also a generalization of graph coloring):

Strong hypergraph coloring is an assigning of colors {1,2,...,c}
to each vertex of V/(H) in such a way that every vertex of an edge
has distinct colors.

The strong chromatic number xs(H) of a hypergraph H is the
least integer ¢ such that H has a strongly c-coloring.

e Xx(H) < xs(H), since a strong hypergraph coloring is also a
hypergraph coloring;
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Proposition
If G is a graph then xs(Gs) < s.x(G).
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Proposition
If G is a graph then xs(Gs) < s.x(G).

Proposition

If k > 2s, we have that:

(I) ’fXS(Gs) < k then Xs(Gsk) = k;
(”) IfXS(Gs) > k then Xs(Gsk) = XS(GS)
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Independence Number

A set U C V is an independent set if no edge of H is contained
in U.

The independence number is a(H) = max{|U| : U C V(H) is an
independent set of H}.
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Independence Number

A set U C V is an independent set if no edge of H is contained
in U.

The independence number is a(H) = max{|U| : U C V(H) is an
independent set of H}.

Proposition

Let G be a graph, then
a(Gf) > (s —1) - |[V(G)| + o(G) + (k — 25) - |[E(G)].
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Adjacency Matrix of G

We managed to write the adjacency matrix of Gs in terms of graph
matrices. For that we need some definitions.

Let G be a graph with n vertices.

e Adjacency matrix of G: A(G) with entries a;; = 1 if v; and
vj are adjacent; and a;; = 0 otherwise.

e Degree matrix of G: D(G) is the diagonal matrix whose
entries are the vertex degrees of G;

e Signless Laplacian matrix of G : Q(G) = D(G) + A(G).

We denote the eigenvalues of A(G) as A\1(G) > ... > A\,(G) and
the eigenvalues of Q(G) as q1(G) > ... > gn(G).
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Let G be a graph with n vertices. The adjacency matrix A(Gs) is
given on s X s blocks of size n X n by:

A(G) Q(G) Q(G) ... Q(G)
Q(G) A(G) Q(G) ... Q(G)
AG) = | QG) Q(G) A(G) ... Q(G

QG) Q(G) QG) ... AG)
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Sketch of proof:
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The proof follow by the way we label the vertices. If we label the
vertices like in the example above, we can write A(Gs) as on the
proposition . L]
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Proposition

Let G be a graph on n vertices and dy, . .., d, the vertices degrees
of G. Then —di,...,—d, are eigenvalues of A(Gs). Moreover,
each —d; has multiplicity at least s — 1.

Proof: Consider the vector v such that:
v=(-1,0,...,0[,1,0,...,0[,0,...,0],...,]0,...,0) € R*",
formed of s "blocks” with n entries each.

v is an eigenvector of A(G;s) associated to the eigenvalue —dj.

Moving the blocks (1,0,...,0) to the right, give us s — 1 linearly
independent eigenvectors of —dj.

OJ

The rest follows similarly.
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If G is a connected graph then A(Gs) has at most n non negative
eigenvalues.
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Let X be a m x n matrix and let Y be a p x g matrix. The
kronecker product X ® Y is the mp x ng matrix:

X11Y X1,,Y
XY= : :
XxmY ... XmnY

Proposition

A(Gs) = (Js @ Q(G)) + (I @ =D(G)),

where Js is the s X s matrix with 1 on all entries and Is is the s X s
identity matrix.
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Adjacency Matrix of Gs

Spectral Parameters Relations between spectral and hypergraph parameters

Theorem A: Let X be a n x n matrix and Y a m x m matrix. If
X1 > ... > X, are the eigenvalues of X and y; > ... > y,, the
eigenvalues of Y, then the nm eigenvalues of X ® Y are:

X1y17' ~>X1)’m7X2)/1)- . ~7X2)/ma~~7xn)’1a~ . aXn)/m-

Theorem B: Let X and Y be square n x n Hermitian matrices
with eigenvalues x; > ... > x, and y1 > ... > y, respectively. If
the eigenvalues of the sum Z =X+ Y are z; > ... > z,, then
Xk +Yn < 2k < Xk + y1.

@ All previously defined matrices are real and symmetric, so they
are Hermitian (a square matrix that is equal to its own
conjugate transpose).
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Proposition

If G be a graph with n vertices, then

5.q1(G) — A(G) < Ai(Gs) < 5.q1(G) — 6(G).

Proof: For the left inequality, we observe that the largest
eigenvalue of Js is s.

By Theorem A, the largest eigenvalue of Js ® Q(G) is s- q1(G).
Also, the smallest eigenvalue of —D(G) is —A(G).

By Theorem A, the smallest eigenvalue of Is ® —D(G) is —A(G).
Since A(Gs) = (Js @ Q(G)) + (Is ® —D(G)), from Theorem B, we
have that s - g1(G) — A(G) < A\1(Gs).

The right inequality follows similarly. L]
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Relations between spectral and hypergraph parameters

Proposition: Given a connected graph G the number of distinct
eigenvalues of A(G) is at least d(G)+1.

This result is still true on hypergraphs with a very similar proof.

Let H be a hypergraph and A = A(H) its adjacency matrix.
(A);; > 0 if there is a path with length | connecting two distinct
vertices i and j, and (A');j = 0 otherwise (where (A!); ; denotes
the entry i, j of A(H)').
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Proposition

If H is a connected hypergraph then
| {distinct eigenvalues of A(H)}| > d(H) + 1.

Proof: Let A\1,...,\; be all the distinct eigenvalues of A= A(H).
Then (A—MA1l)...(A— Atl) =0. So, we have that A’ is a linear
combination of At71, ... A, I.

Lucas L. S. Portugal Renata R. Del-Vecchio Simone Dantas



Adjacency Matrix of Gg
Spectral Parameters Relations between spectral and hypergraph parameters

Proposition

If H is a connected hypergraph then
| {distinct eigenvalues of A(H)}| > d(H) + 1.

Proof: Let A\1,...,\; be all the distinct eigenvalues of A= A(H).
Then (A—MA1l)...(A— Atl) =0. So, we have that A’ is a linear
combination of At71, ... A, I.

Suppose by contradiction that t < d(H).

Hence 3/, such that d(i,j) = t.

From our previous lemma, we have that (A*);; > 0, and since
there exists no path with length shorter than t joining i and j,
(At_l),'yj =0,..., (A),’J =0, (I),‘J =0.

This is a contradiction, since

0< (At),',j = C1(At_1),',j +...+ Ct_l(A),'y_,' + Ct(/),'yj =0. ]
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If G is connected then
| { distinct eigenvalues of A(GK)} | > d(G) + 1.

In other words, to find connected hypergraphs of the class Gsk with
few distinct adjacency eigenvalues, we have to look for graphs G
with small diameter.
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Proposition:If G is a graph, then o(G) < min{\(G)~,\(G)"},
where A\(G)~ is the number of non positive eigenvalues of A(G)
and A\(G)™ is the number of non negative eigenvalues of A(G).

This is not valid for hypergraphs in general and it is never true for
connected hypergraphs of the class Gs.
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Proposition
If G is a connected graph on n vertices, then
a(Gs) > min {\(Gs)™, \(Gs)T}.

Proof: We have seen that A(G;) has at most n non negative
eigenvalues. Hence, from the independence number proposition:

(Gs) > (s —1)n+ a(G) > n > A(Gs)t > min {\(Gs) ™, MGs) "}
L]
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Proposition: For any graph G, |v(((c;;))\ < A(G)+1.

«

This fact has not yet been generalized for hypergraphs and we
prove its validity for connected hypergraphs in the class G;.

Proposition

If G is connected on n vertices then |Z((g:))| < A\(Gs) + 1.
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Proof: From the independence number proposition, we have that
|V(Gs)| _ sn < sn < sn — _S
a(Gs) — afGs) = (s—1)n+a(G) — (s—1)n = s—1°

Now, notice that s- q1(G) — A(G) +1 < A\1(Gs) + 1. (from the
bound on A1(Gs)).

Thus, it suffices to show that 27 < s.q1(G) — A(G) + 1.
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Proof: From the independence number proposition, we have that
|V(Gs)| _ sn < sn < sn — _S
a(Gs) — afGs) = (s—1)n+a(G) — (s—1)n = s—1°

Now, notice that s- q1(G) — A(G) +1 < A\1(Gs) + 1. (from the
bound on A1(Gs)).

Thus, it suffices to show that 27 < s.q1(G) — A(G) + 1.

If 2 <5.91(G) — A(G) + 1 then the above inequality is valid.
Indeed:

5.q1(G)—A(G)+1 > s(A(G)+1)~A(G)+1 = (s—1)A(G)+s+1 > 2.

Note that the first inequality holds because: If G is a connected
graph then g1(G) > A(G) + 1. O
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Thank you.
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