Relating hypergraph parameters of generalized power graphs

Lucas L. S. Portugal Renata R. Del-Vecchio Simone Dantas

IME, Universidade Federal Fluminense, Brazil

29 de julho de 2020

Introduction

- A hypergraph H = (V, E) is given by a vertex set V and a set $E = \{e : e \subseteq V\}$.
- *H* is **k-uniform** if |e| = k for every edge $e \in E$.
- A hypergraph is **simple** if it has no loops (edges with |e| = 1) and if given any pair of edges, no edge contains the other.

Let G be a graph and $s \ge 1$ an integer.

The **s-extension** G_s of G is a 2s-uniform hypergraph obtained from G by replacing each vertex $v_i \in V$ for a set $S_{v_i} = \{v_{i1}, \ldots, v_{is}\}$ of s vertices, where $S_{v_i} \cap S_{v_j} = \emptyset$ for every $v_i \neq v_i$.

Example: G and G_2

More precisely, $V(G_S) = \{v_{11}, \dots, v_{1s}, \dots, v_{n1}, \dots, v_{ns}\}$ and $E(G_s) = \{S_{v_i} \cup S_{v_j} : \{v_i, v_j\} \in E\}$. Note that $|V(G_s)| = s \cdot |V(G)|$ and $|E(G_s)| = |E(G)|$. Let $s \ge 1$ and $k \ge 2s$ be two integers and consider a graph G. The **generalized power graph** G_s^k is the k-uniform hypergraph $(G_s)^k$, obtained by adding k-2s new vertices to each edge of G_s , called **additional vertices**.

Example: G_2 and $(G_2)^6$

Note that
$$|V(G_s^k)| = s \cdot |V(G)| + (k-2s) \cdot |E(G)|$$
 and $|E(G_s^k)| = |E(G)|$.

Remark:

- When s = 1 we have that $G_s = G$.
- When k = 2s we have that $G_s^k = G_s$
- The case where $G_s^k = G$ (ie, s = 1 and k = 2s) will not be considered.
- If G is a simple graph then G_s^k is a simple hypergraph. We will always consider G simple and with at least one edge.

Let H be a hypergraph with n vertices.

The **adjacency matrix** of H, denoted by A(H) is the $n \times n$ symmetric matrix:

$$a_{ij} = |\{e \in E(H) : v_i, v_j \in e\}|.$$

We denote the eigenvalues of A(H) as $\lambda_1(H) \geq \ldots \geq \lambda_n(H)$.

Example:

$$A(H) = \begin{bmatrix} 0 & 2 & 1 & 1 & 1 & 0 \\ 2 & 0 & 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Introduction Structural Parameters Spectral Parameters References

• We study the behavior of hypergraphs parameters on the class G_s^k and their relation with the respective parameters of the original graph G, spectral properties given by the adjacency matrix and establish relations between spectral and structural parameters.

Diameter

A **path** P in a hypergraph H is a vertex-edge alternating sequence: $P = v_0$, e_1 , v_1 , e_2 , ..., v_{r-1} , e_r , v_r such that v_0 , v_1 , ..., v_r are distinct vertices; e_1 , e_2 , ..., e_r are distinct edges; and v_{i-1} , $v_i \in e_i$, $i = 1, 2, \ldots, r$. The **length** of a path P is the number of distinct edges. A hypergraph is **connected** if for any pair of vertices, there is a path which connects them.

The **distance** d(v, u) between two vertices v and u of a connected hypergraph is the minimum length of a path that connects v and u. The **diameter** d(H) of H is defined by $d(H) = max \{d(v, u) : v, u \in V\}$.

- G is connected if and only if G_s^k is connected.
- $d(G_s) = d(G)$.

 $d(G) \le d(G_s^k) \le d(G) + 2$ for any connected graph G.

Hypergraph Coloring

A **hypergraph coloring** is an assigning of colors $\{1, 2, ..., c\}$ to each vertex of V(H) in such a way that each edge contains at least two vertices of distinct colors.

A coloring using at most c colors is called a c-coloring.

The *chromatic number* $\chi(H)$ of a hypergraph H is the least integer c such that H has a c-coloring.

Remark:

- Given a graph G we have that $\chi(G_s^k) = 2$.
- A hypergraph H=(V,E) is **bipartite** if its vertex set V can be partitioned into two sets, X and Y such that for every edge $e \in E$, $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.
- A hypergraph H is bipartite if and only if H is 2—colorable.
- G_s^k is bipartite for any graph G.

Another type of coloring (also a generalization of graph coloring):

Strong hypergraph coloring is an assigning of colors $\{1, 2, ..., c\}$ to each vertex of V(H) in such a way that every vertex of an edge has distinct colors.

The strong chromatic number $\chi_S(H)$ of a hypergraph H is the least integer c such that H has a strongly c-coloring.

• $\chi(H) \leq \chi_S(H)$, since a strong hypergraph coloring is also a hypergraph coloring;

If G is a graph then $\chi_S(G_s) \leq s.\chi(G)$.

If G is a graph then $\chi_S(G_s) \leq s.\chi(G)$.

Proposition

If k > 2s, we have that:

(i) if
$$\chi_S(G_s) < k$$
 then $\chi_S(G_s^k) = k$;

(ii) if
$$\chi_S(G_s) \geq k$$
 then $\chi_S(G_s^k) = \chi_S(G_s)$.

Independence Number

A set $U \subseteq V$ is an **independent set** if no edge of H is contained in U.

The **independence number** is $\alpha(H) = max\{|U| : U \subseteq V(H) \text{ is an independent set of H}\}.$

Independence Number

A set $U \subseteq V$ is an **independent set** if no edge of H is contained in U.

The **independence number** is $\alpha(H) = max\{|U| : U \subseteq V(H) \text{ is an independent set of H}\}.$

Proposition

Let G be a graph, then $\alpha(G_s^k) \ge (s-1) \cdot |V(G)| + \alpha(G) + (k-2s) \cdot |E(G)|$.

Adjacency Matrix of G_s

We managed to write the adjacency matrix of G_s in terms of graph matrices. For that we need some definitions.

Let G be a graph with n vertices.

- Adjacency matrix of G: A(G) with entries $a_{ij} = 1$ if v_i and v_j are adjacent; and $a_{ij} = 0$ otherwise.
- **Degree matrix** of G: D(G) is the diagonal matrix whose entries are the vertex degrees of G;
- Signless Laplacian matrix of G: Q(G) = D(G) + A(G).

We denote the eigenvalues of A(G) as $\lambda_1(G) \geq \ldots \geq \lambda_n(G)$ and the eigenvalues of Q(G) as $q_1(G) \geq \ldots \geq q_n(G)$.

Let G be a graph with n vertices. The adjacency matrix $A(G_s)$ is given on $s \times s$ blocks of size $n \times n$ by:

$$A(G_s) = \left[egin{array}{ccccc} A(G) & Q(G) & Q(G) & \dots & Q(G) \\ Q(G) & A(G) & Q(G) & \dots & Q(G) \\ Q(G) & Q(G) & A(G) & \dots & Q(G) \\ dots & dots & dots & \ddots & dots \\ Q(G) & Q(G) & Q(G) & \dots & A(G) \end{array}
ight].$$

Sketch of proof:

The proof follow by the way we label the vertices. If we label the vertices like in the example above, we can write $A(G_s)$ as on the proposition .

Let G be a graph on n vertices and d_1, \ldots, d_n the vertices degrees of G. Then $-d_1, \ldots, -d_n$ are eigenvalues of $A(G_s)$. Moreover, each $-d_i$ has multiplicity at least s-1.

Proof: Consider the vector *v* such that:

$$v = (-1, 0, \dots, 0|, 1, 0, \dots, 0|, 0, \dots, 0|, \dots, |0, \dots, 0) \in R^{sn}$$
, formed of s "blocks" with n entries each.

v is an eigenvector of $A(G_s)$ associated to the eigenvalue $-d_1$.

Moving the blocks $(1,0,\ldots,0)$ to the right, give us s-1 linearly independent eigenvectors of $-d_1$.

The rest follows similarly.

Corollary

If G is a connected graph then $A(G_s)$ has at most n non negative eigenvalues.

Let X be a $m \times n$ matrix and let Y be a $p \times q$ matrix. The **kronecker product** $X \otimes Y$ is the $mp \times nq$ matrix:

$$X \otimes Y = \left[\begin{array}{ccc} x_{11}Y & \dots & x_{1n}Y \\ \vdots & \ddots & \vdots \\ x_{m1}Y & \dots & x_{mn}Y \end{array} \right].$$

Proposition

$$A(G_s) = (J_s \otimes Q(G)) + (I_s \otimes -D(G)),$$

where J_s is the $s \times s$ matrix with 1 on all entries and I_s is the $s \times s$ identity matrix.

Theorem A: Let X be a $n \times n$ matrix and Y a $m \times m$ matrix. If $x_1 \ge ... \ge x_n$ are the eigenvalues of X and $y_1 \ge ... \ge y_m$ the eigenvalues of Y, then the nm eigenvalues of $X \otimes Y$ are: $x_1y_1, ..., x_1y_m, x_2y_1, ..., x_2y_m, ..., x_ny_1, ..., x_ny_m$.

Theorem B: Let X and Y be square $n \times n$ Hermitian matrices with eigenvalues $x_1 \ge ... \ge x_n$ and $y_1 \ge ... \ge y_n$ respectively. If the eigenvalues of the sum Z = X + Y are $z_1 \ge ... \ge z_n$, then $x_k + y_n \le z_k \le x_k + y_1$.

 All previously defined matrices are real and symmetric, so they are Hermitian (a square matrix that is equal to its own conjugate transpose).

If G be a graph with n vertices, then

$$s.q_1(G) - \Delta(G) \leq \lambda_1(G_s) \leq s.q_1(G) - \delta(G).$$

Proof: For the left inequality, we observe that the largest eigenvalue of J_s is s.

By Theorem A, the largest eigenvalue of $J_s \otimes Q(G)$ is $s \cdot q_1(G)$.

Also, the smallest eigenvalue of -D(G) is $-\Delta(G)$.

By Theorem A, the smallest eigenvalue of $I_s \otimes -D(G)$ is $-\Delta(G)$.

Since $A(G_s) = (J_s \otimes Q(G)) + (I_s \otimes -D(G))$, from Theorem B, we have that $s \cdot q_1(G) - \Delta(G) \leq \lambda_1(G_s)$.

The right inequality follows similarly.

Relations between spectral and hypergraph parameters

Proposition: Given a connected graph G the number of distinct eigenvalues of A(G) is at least d(G)+1.

This result is still true on hypergraphs with a very similar proof.

Lemma

Let H be a hypergraph and A = A(H) its adjacency matrix. $(A^I)_{i,j} > 0$ if there is a path with length I connecting two distinct vertices i and j, and $(A^I)_{i,j} = 0$ otherwise (where $(A^I)_{i,j}$ denotes the entry i,j of $A(H)^I$).

If H is a connected hypergraph then $|\{distinct\ eigenvalues\ of\ A(H)\}| \ge d(H) + 1.$

Proof: Let $\lambda_1, \ldots, \lambda_t$ be all the distinct eigenvalues of A = A(H). Then $(A - \lambda_1 I) \ldots (A - \lambda_t I) = 0$. So, we have that A^t is a linear combination of A^{t-1}, \ldots, A, I .

If H is a connected hypergraph then $|\{distinct\ eigenvalues\ of\ A(H)\}| \ge d(H) + 1.$

Proof: Let $\lambda_1, \ldots, \lambda_t$ be all the distinct eigenvalues of A = A(H).

Then $(A - \lambda_1 I) \dots (A - \lambda_t I) = 0$. So, we have that A^t is a linear combination of A^{t-1}, \dots, A, I .

Suppose by contradiction that $t \leq d(H)$.

Hence $\exists i, j$ such that d(i, j) = t.

From our previous lemma, we have that $(A^t)_{i,j} > 0$, and since there exists no path with length shorter than t joining i and j,

$$(A^{t-1})_{i,j} = 0, \ldots, (A)_{i,j} = 0, (I)_{i,j} = 0.$$

This is a contradiction, since

$$0 < (A^t)_{i,j} = c_1(A^{t-1})_{i,j} + \ldots + c_{t-1}(A)_{i,j} + c_t(I)_{i,j} = 0.$$

Corollary

If G is connected then $|\{distinct\ eigenvalues\ of\ A(G_s^k)\}| \ge d(G) + 1.$

In other words, to find connected hypergraphs of the class G_s^k with few distinct adjacency eigenvalues, we have to look for graphs G with small diameter.

Proposition:If G is a graph, then $\alpha(G) \leq \min \{\lambda(G)^-, \lambda(G)^+\}$, where $\lambda(G)^-$ is the number of non positive eigenvalues of A(G) and $\lambda(G)^+$ is the number of non negative eigenvalues of A(G).

This is not valid for hypergraphs in general and it is never true for connected hypergraphs of the class G_s .

If G is a connected graph on n vertices, then $\alpha(G_s) > \min \{ \lambda(G_s)^-, \lambda(G_s)^+ \}.$

Proof: We have seen that $A(G_s)$ has at most n non negative eigenvalues. Hence, from the independence number proposition:

$$\alpha(\textit{G}_{\textit{s}}) \geq (\textit{s}-1)\textit{n} + \alpha(\textit{G}) > \textit{n} \geq \lambda(\textit{G}_{\textit{s}})^{+} \geq \textit{min}\left\{\lambda(\textit{G}_{\textit{s}})^{-}, \lambda(\textit{G}_{\textit{s}})^{+}\right\}$$

.

Proposition: For any graph G, $\frac{|V(G)|}{\alpha(G)} \leq \lambda_1(G) + 1$.

This fact has not yet been generalized for hypergraphs and we prove its validity for connected hypergraphs in the class G_s .

Proposition

If G is connected on n vertices then $\frac{|V(G_s)|}{\alpha(G_s)} \leq \lambda_1(G_s) + 1$.

Proof: From the independence number proposition, we have that $\frac{|V(G_s)|}{\alpha(G_s)} = \frac{sn}{\alpha(G_s)} \le \frac{sn}{(s-1)n+\alpha(G)} \le \frac{sn}{(s-1)n} = \frac{s}{s-1}$.

Now, notice that $s \cdot q_1(G) - \Delta(G) + 1 \le \lambda_1(G_s) + 1$. (from the bound on $\lambda_1(G_s)$).

Thus, it suffices to show that $\frac{s}{s-1} \leq s.q_1(G) - \Delta(G) + 1$.

Proof: From the independence number proposition, we have that $\frac{|V(G_s)|}{\alpha(G_s)} = \frac{sn}{\alpha(G_s)} \le \frac{sn}{(s-1)n+\alpha(G)} \le \frac{sn}{(s-1)n} = \frac{s}{s-1}$.

Now, notice that $s \cdot q_1(G) - \Delta(G) + 1 \le \lambda_1(G_s) + 1$. (from the bound on $\lambda_1(G_s)$).

Thus, it suffices to show that $\frac{s}{s-1} \leq s.q_1(G) - \Delta(G) + 1$.

If $2 \le s.q_1(G) - \Delta(G) + 1$ then the above inequality is valid. Indeed:

$$s.q_1(G)-\Delta(G)+1\geq s(\Delta(G)+1)-\Delta(G)+1=(s-1)\Delta(G)+s+1\geq 2.$$

Note that the first inequality holds because: If G is a connected graph then $q_1(G) \ge \Delta(G) + 1$.

References

- Agnarsson, G., Halldorsson, M.: Strong colorings of hypergraphs. In: G. Persiano (ed.) Approximation and Online Algorithms, pp. 253–266.
 Springer, Heidelberg (2005)
- Annamalai, C.: Finding perfect matchings in bipartite hypergraphs. arXiv:1711.09356v3 [math.CO] (2016). http://arxiv.org/pdf/1509.07007.pdf
- Banerjee, A.: On the spectrum of hypergraphs. arXiv:1711.09356v3 [math.CO] (2019). http://arxiv.org/pdf/1711.09356.pdf
- Bretto, A.: Hypergraph Theory: An Introduction. Springer Publishing Company, Incorporated, Heidelberg, New York (2013)
- Cardoso, K., Trevisan, V.: The signless laplacian matrix of hypergraphs. arXiv:1909.00246v2 [math.SP] (2019). http://arxiv.org/pdf/1909.00246
- Chen, Y., Wang, L.: Sharp bounds for the largest eigenvalue of the signless laplacian of a graph. Linear Algebra and Its Applications 433, 908–913 (2010)

- Chishti, T., Zhou, G., Pirzada, S., Ivanyi, A.: On vertex independence number of uniform hypergraphs. Acta Universitatis Sapientiae. Informatica 6 (2014)
- Cooper, J., Dutle, A.: Spectra of uniform hypergraphs. Linear Algebra and Its Applications 436, 3268—3292 (2012)
- Dewar, M., Pike, D., Proos, J.: Connectivity in hypergraphs. arXiv:1611.07087v3 [math.CO] (2018). http://arxiv.org/pdf/1611.07087.pdf
- Feng, K., Ching, W., Li, W.: Spectra of hypergraphs and applications.
 Journal of Number Theory 60, 1–22 (1996)
- Friezea, A., Mubayib, D.: Coloring simple hypergraphs. Journal of Combinatorial Theory 103, 767-794 (2013)
- Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

- Jin, Y., Zhang, J., Zhang, X.: Equitable partition theorem of tensors and spectrum of generalized power hypergraphs. Linear Algebra and Its Applications 555, 21—38 (2018)
- Kang, L., Liu, L., Qi, L., Yuan, X.: Spectral radii of two kinds of uniform hypergraphs. AppliedMathematics and Computation 338, 661–668 (2018)
- Khan, M., Fan, Y.: On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs. Linear Algebra and Its Applications 480, 93-106 (2015)
- Schacke, K.: On the kronecker product. Ph.D. thesis, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada (2004).

Thank you.