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Introduction

• Vehicle routing is a class of problems that appears in several com-
binatorial optimization studies due to their practical relevance.

– Mainly in the areas of retail and transport [Toth e Vigo 2014].

• [Spliet e Desaulniers 2015] introduced the Time Window Assign-
ment Vehicle Routing Problem (TWAVRP).

– The exogenous time windows are represented by the arrival and
departure limits of a customer.

– Each endogenous time window with a fixed-width, must be asso-
ciated with the exogenous time window of the client.
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Introduction

• The TWAVRP faced in this work is part of a research whose focus
is to give an efficient and accurate solution for a routing problem
faced by an Italian company (Coopservice) providing logistics
services in several distribution fields.
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Introduction

• Our purpose is to help the company to minimize the actual de-
livery time and the total cost of the routing service.

• We decided to start our research by first looking at the combina-
torial aspect of the TWAVRP, with the aim of focusing later on
its application to the company case study.

4/24



Introduction

• Coopservice context:
– Each vehicle leaves a depot and must visit a set of hospitals.
– The hospital staff should be at the delivery placewhen the vehicle

arrives.
– Each hospital has a particular time window.
– Each hospital requests products that respect the vehicle capacity.

• Over a set of scenarios Ω, the challenge is to build a schedule
subject to the technical constraints, minimizing costs and maxi-
mizing time window robustness.
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Introduction

• We propose an algorithm that:
– Generates a set of routes by invoking an Iterated Local Search

(ILS) metaheuristic.
– Selects the most appropriate routes through an auxiliary

mathematical formulation.

General Objective

Is there a heuristic strategy that can efficiently solve the TWAVRP as
defined by [Dalmeijer e Spliet 2018, Spliet e Gabor 2014]?

6/24



Literature review

• The approached problem has characteristics that resemble:
1. Pharmaceutical Vehicle Routing Problem (Pharmaceutical VRP)

[Magalhães e Sousa 2006];
2. Vehicle Routing Problem with Time Windows (VRPTW)

[Desrochers, Desrosiers e Solomon 1992];
3. Time Window Assignment Vehicle Routing Problem (TWAVRP)

[Spliet e Gabor 2014];
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Methodology: Proposed heuristic

• The proposed heuristic has two successive phases.
1. Generate a pool of feasible routes;
2. Selects a subset of routes having minimum cost.

Algorithm 1:Main algorithm
1 Input: I (instance)

2 Output: (s, f(s)) (solution, and its objective function)

3 P← ;; . Empty pool of routes

4 foreach ω ∈ Ω do

5 P← P∪ ILS(Iω , α, niter ); . Generating the set of routes for each scenario

6 s← RSM(P, I); . Route Selector Model (RSM)

7 return (s, f(s));
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Methodology: Iterated Local Search (ILS)

• ILS algorithm is a metaheuristic method to generate a sequence
of solutions to a problem iteratively. These solutions are obtained
through iterative applications of improvement methods in each
solution [Stützle e Ruiz 2018].

– Initial Solution
– Local Search (LS)
– Perturbation
– Acceptance criterion
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Methodology: Constructive Heuristic

Algorithm 2: Constructive Heuristic (CH)
1 Input: I (data set), Hω (set of all available clients for a data set I on scenario ω)

2 Output: s (feasible solution)

3 s← ;;
4 H̃ ← sort(Hω ); . sort clients in non-descending order of earliest exogenous time window

5 while H̃ 6= ; do
6 R ← ;;
7 foreach j ∈ H̃ do

8 R ←R ∪ {j};
9 if infeasible(R ) = true then

10 R ←R\{j};
11 else

12 H̃ ← H̃ \{j};

13 s← s ∪R ;

14 return s
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Methodology: Local Search (ILS)

• The proposed LS method will be composed of 6 elementary
neighborhood movements:
N1 Relocate intra-route
N2 Swap intra-route
N3 2-opt
N4 Relocate inter-route
N5 Swap inter-route
N6 Cross inter-route
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Methodology: Local Search (ILS)

Algorithm 3: Local Search method (LS)
1 Input: s (feasible solution)

2 Output: s∗ (best feasible solution found)

3 s∗ ← s;

4 foreach N ∈ NL(s∗) . NL(s∗): list of inter-neighborhoods of solution s∗

5 do

6 foreach s′ ∈ N do

7 if f(s′) < f(s∗) and feasible(s′ ) = true then

8 s∗ ← s′ ;

9 foreach N ∈ NI(s∗) . NI(s∗): list of intra-neighborhoods of solution s′

10 do

11 foreach s̃ ∈ N do

12 if f(s̃) < f(s∗) and feasible(̃s) = true then

13 s∗ ← s̃;

14 return s∗
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Methodology: Perturbation

• Starting from a solution s∗, the Perturbation method invokes a
list of NL(s∗) of possible neighborhood moves according to all
neighborhood moves (N1, N2, N3, N4, N5, and N6). A percentage
α of neighborhoods in NL(s∗) is randomly chosen and applied
to s∗.
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Methodology: Iterated Local Search (ILS)

Algorithm 4: Iterated Local Search (ILS)
1 Input: Hω (data set), α (perturbation factor), niter (number of iterations)

2 Output: P (set of feasible solutions found)

3 s∗ ← ;; . Best solution found so far (take f(s∗) = +∞)

4 s← CH(H,Hω ); . Hω : set of available customers of data set H

5 sls ← LS(s);

6 P ← sls ∪ s; . Initializing the set of feasible solutions

7 s∗ ← sls ;

8 count← 0

9 while count 6= niter do

10 s′ ← Perturbation(s∗ , α);

11 sls ← LS(s′ );

12 P ← P ∪ s′ ∪ sls ;
13 if f(s′) < f(s∗) then

14 s∗ ← s′ ;

15 count← 0;

16 else

17 count← count+ 1;

18 returnP ;
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Methodology: Route Selector Model (RSM)

• The ILS algorithm generates a set Rω of feasible routes for each
scenario ω ∈ Ω.

• Note that all routes in Rω respect for the TWAVRP:
– Capacity of the vehicles;
– Time-windows of the customers;

• TheMILP aim is to choose the most appropriate subset of routes
from Rω, assigning an endogenous time window to each client,
overall scenarios.
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Methodology: Route Selector Model (RSM)

• Take from Rω:
1. fωjr as the starting time of service on client j on the route r in

scenario ω;
2. cωr as the cost to choose a route r ∈ Rω in scenario ω;
3. xωjr as a binary parameter equal to one if client j belongs to route

r ∈ Rω in scenario ω, 0 otherwise.

• Customer j ∈ Hmust be delivered at time window [ej, lj].

• Consider uωr as a binary variable equal to one if route r ∈ Rω is
selected, 0 otherwise.

• yi as a continuous variable that measures the starting time of
the endogenous time window of customer i ∈ H.

• wi gives the time window width of customer i.
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Methodology: Route Selector Model (RSM)

min
∑︁
ω∈Ω

pωcωr u
ω

r (1)

subject to

∑︁
r∈Rω

xωjru
ω

r = 1 ∀j ∈ H, ω ∈ Ω (2)∑︁
r∈Rω

fωjr x
ω

jru
ω

r ≥ yj ∀j ∈ H, ω ∈ Ω (3)∑︁
r∈Rω

fωjr x
ω

jru
ω

r ≤ yj + wi ∀j ∈ H, ω ∈ Ω (4)

yj ∈ [ej, lj − wj] ∀j ∈ H, ω ∈ Ω (5)

uωr ∈ {0, 1} ∀ω ∈ Ω, r ∈ Rω. (6)
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Computational experiments: TWAVRP Instances

• Each instance considers a different combination of:
– Number of customers
– Vehicle capacity
– Demand for each scenario
– Probability of each scenario
– Exogenous time windows
– Size of endogenous time windows
– Travel costs
– Travel times

• The instance set comprises ninety instances divided into two
classes: small instances and large ones.
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Computational experiments: Experiments

• The experiments compare our ILS based-algorithm with the
Branch-and-Cut (B&C) proposed by [Dalmeijer e Spliet 2018]

• Algorithm 4 was executed five times on each instance.
1. This number was tuned through preliminary tests in which we

obtained a good trade-off between quality and computational
effort.

• niter andαwere tunedby Iracepackage [López-Ibáñez et al. 2016].

• we generated 200 training instances by using the instance gen-
erator proposed by [Dalmeijer e Spliet 2018].

• The values returned by the Irace package at the end of this test
were niter = 100 and α = 0.35.
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Computational experiments: Experiment 1

Table 1: Average results aggregated by number of customers (10 instances
per line, 5 ILS executions per instance)

Instance CPU time (seconds) Gaps

N. customers B&C ILS ILS+RSM Gap∗(%) Gap(%)

10 0.1 4.50 ± 0.29 6.61 ± 0.56 0.34 ± 1.00 0.41 ± 1.02

15 4.5 16.50 ± 1.17 26.25 ± 1.86 0.00 ± 0.18 0.11 ± 0.25

20 2.2 39.06 ± 2.01 80.30 ± 7.49 0.02 ± 0.05 0.06 ± 0.10

25 12.4 68.48 ± 2.03 153.29 ± 18.56 0.06 ± 0.14 0.27 ± 0.78

30 544.0 107.27 ± 3.40 284.38 ± 12.62 0.04 ± 0.10 0.28 ± 0.39

35 1,531.7 161.59 ± 9.48 501.77 ± 97.94 0.02 ± 0.13 0.29 ± 0.42

40 3,252.0 224.33 ± 6.11 749.92 ± 41.11 0.10 ± 0.52 0.72 ± 0.73

45 3,600.0 289.34 ± 28.78 990.15 ± 172.79 -0.69 ± 0.83 -0.18 ± 1.61

50 3,600.0 372.98 ± 24.41 1,743.16 ± 261.71 -1.89 ± 0.12 -1.62 ± 1.31
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Computational experiments: Experiment 1

Table 2: Results for instances with 45-50 customers (best UB values appear
in bold)

Instance B&C by [Dalmeijer e Spliet 2018] ILS + RSM

# N. customers LB UB Best UB Avg UB

71 45 49.52 51.78 51.22 51.41

72 45 50.73 52.13 51.86 52.94

73 45 41.50 41.70 41.95 42.24

74 45 47.25 47.84 47.96 48.16

75 45 48.77 49.86 49.47 50.02

76 45 48.38 52.09 49.90 50.03

77 45 50.09 51.18 51.18 51.25

78 45 52.02 53.95 53.35 53.74

79 45 47.45 48.21 48.27 48.69

80 45 49.57 50.57 50.61 50.78

81 50 56.81 58.85 58.16 58.29

82 50 51.50 53.20 52.98 53.03

83 50 57.45 60.67 58.77 58.89

84 50 52.31 56.38 54.09 54.23

85 50 53.74 56.07 55.06 55.26

86 50 51.68 54.76 53.02 53.16

87 50 52.47 54.14 53.81 53.87

88 50 54.82 56.91 56.27 56.36

89 50 59.23 61.51 60.32 60.62

90 50 57.68 59.55 58.95 59.23
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Conclusion

• We studied the TimeWindows Assignment Vehicle Routing Prob-
lem (TWAVRP).

• We compared the results of our algorithm (ILS+RSM) with the
Branch-and-Cut proposed by [Dalmeijer e Spliet 2018].

• The ILS+RSM presented competitive results, concerning both
solution quality and computational effort, in particular for the
larger size instances involving 45 and 50 customers.
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Conclusion

• Future avenues concern:
i incorporating new complicating constraints deriving from the
real-world case study in the metaheuristic;

ii testing other neighborhood-based metaheuristics as generators
of routes;

iii testing multiple calls to the RSM with different pools of routes.
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