On solving the time window assignment vehicle routing problem via iterated local search

Lucas Burahem Martins Advisor: Prof. DSc. Mayron César de Oliveira Moreira Co-advisor: Prof. DSc. Manuel Iori Giorgio Zucchi

14/08/2020

Contents

- 1. Introduction
- 2. Literature review
- 3. Methodology
 - 3.1 Proposed heuristic
 - 3.2 Iterated Local Search (ILS)
 - 3.3 Route Selector Model (RSM)
- 4. Computational experiments
 - 4.1 Experiments
- 5. Conclusion
- 6. References

- Vehicle routing is a class of problems that appears in several combinatorial optimization studies due to their practical relevance.
 - Mainly in the areas of retail and transport [Toth e Vigo 2014].
- [Spliet e Desaulniers 2015] introduced the Time Window Assignment Vehicle Routing Problem (TWAVRP).
 - The exogenous time windows are represented by the arrival and departure limits of a customer.
 - Each endogenous time window with a fixed-width, must be associated with the exogenous time window of the client.

• The TWAVRP faced in this work is part of a research whose focus is to give an efficient and accurate solution for a routing problem faced by an Italian company (Coopservice) providing logistics services in several distribution fields.

- Our purpose is to help the company to minimize the actual delivery time and the total cost of the routing service.
- We decided to start our research by first looking at the combinatorial aspect of the TWAVRP, with the aim of focusing later on its application to the company case study.

- Coopservice context:
 - Each vehicle leaves a depot and must visit a set of hospitals.
 - The hospital staff should be at the delivery place when the vehicle arrives.
 - Each hospital has a particular time window.
 - Each hospital requests products that respect the vehicle capacity.
- Over a set of scenarios Ω, the challenge is to build a schedule subject to the technical constraints, minimizing costs and maximizing time window robustness.

- We propose an algorithm that:
 - Generates a set of routes by invoking an *Iterated Local Search* (ILS) metaheuristic.
 - Selects the most appropriate routes through an auxiliary mathematical formulation.

General Objective

Is there a heuristic strategy that can efficiently solve the TWAVRP as defined by [Dalmeijer e Spliet 2018, Spliet e Gabor 2014]?

Literature review

- The approached problem has characteristics that resemble:
 - 1. Pharmaceutical Vehicle Routing Problem (Pharmaceutical VRP) [Magalhães e Sousa 2006];
 - Vehicle Routing Problem with Time Windows (VRPTW) [Desrochers, Desrosiers e Solomon 1992];
 - Time Window Assignment Vehicle Routing Problem (TWAVRP) [Spliet e Gabor 2014];

Methodology: Proposed heuristic

• The proposed heuristic has two successive phases.

- 1. Generate a pool of feasible routes;
- 2. Selects a subset of routes having minimum cost.

Algorithm 1: Main algorithm

1	Input: / (instance)	
2	Output: (s, f(s)) (solution, and its objective function)	
3	$P \leftarrow \emptyset;$	Empty pool of routes
4	foreach $\omega \in \Omega$ do	
5	$P \leftarrow P \cup ILS(I_{\omega}, \alpha, n_{iter});$	Generating the set of routes for each scenario
6	$s \leftarrow RSM(P, I);$	Route Selector Model (RSM)
7	return (s, f(s));	

Methodology: Iterated Local Search (ILS)

- ILS algorithm is a metaheuristic method to generate a sequence of solutions to a problem iteratively. These solutions are obtained through iterative applications of improvement methods in each solution [Stützle e Ruiz 2018].
 - Initial Solution
 - Local Search (LS)
 - Perturbation
 - Acceptance criterion

Methodology: Constructive Heuristic

Algorithm 2: Constructive Heuristic (CH)

- Input: I (data set), H_ω (set of all available clients for a data set I on scenario ω)
- 2 Output: s (feasible solution)
- 3 s ← Ø;
- 4 $\tilde{\mathcal{H}} \leftarrow \text{sort}(H_{\omega});$
- 5 while $\tilde{\mathcal{H}} \neq \emptyset$ do

```
\mathscr{R} \leftarrow \emptyset
6
                        foreach i \in \tilde{\mathcal{H}} do
7
                                          \mathscr{R} \leftarrow \mathscr{R} \cup \{i\};
 8
                                          if infeasible(\mathcal{R}) = true then
 9
                                                            \mathscr{R} \leftarrow \mathscr{R} \setminus \{i\};
10
                                          else
11
                                                            \tilde{\mathcal{H}} \leftarrow \tilde{\mathcal{H}} \setminus \{i\};
12
                         s \leftarrow s \cup \mathcal{R}:
13
        return s
14
```

> sort clients in non-descending order of earliest exogenous time window

Methodology: Local Search (ILS)

- The proposed LS method will be composed of 6 elementary neighborhood movements:
 - N1 Relocate intra-route
 - N2 Swap intra-route
 - N3 2-opt
 - N4 Relocate inter-route
 - N5 Swap inter-route
 - N6 Cross inter-route

Methodology: Local Search (ILS)

Algorithm 3: Local Search method (LS)

```
1 Input: s (feasible solution)
2 Output: s* (best feasible solution found)
3 s* ← s;
4 foreach N \in NL(s^*)
                                                                                    ▶ NL(s*): list of inter-neighborhoods of solution s*
    do
5
           for each s' \in N do
6
                   if f(s') < f(s^*) and f(s) = true then
7
                           s^* \leftarrow s':
 8
                           foreach N \in NI(s^*)
                                                                                     ▶ NI(s*): list of intra-neighborhoods of solution s'
 9
                            do
10
                                   foreach \tilde{s} \in N do
11
                                           if f(\tilde{s}) < f(s^*) and f(s) = true then
12
                                                  s* ← š.
 13
   return s*
14
```

Methodology: Perturbation

Starting from a solution s*, the Perturbation method invokes a list of NL(s*) of possible neighborhood moves according to all neighborhood moves (N1, N2, N3, N4, N5, and N6). A percentage α of neighborhoods in NL(s*) is randomly chosen and applied to s*.

Methodology: Iterated Local Search (ILS)

Algorithm 4: Iterated Local Search (ILS)

- 1 Input: H_ω (data set), α (perturbation factor), n_{iter} (number of iterations)
- 2 Output: *P* (set of feasible solutions found)
- 3 s^{*} ← Ø;
- 4 $s \leftarrow CH(H, H_{\omega});$
- $s \quad s_{ls} \leftarrow LS(s);$
- 6 $\mathscr{P} \leftarrow s_{ls} \cup s;$
- $s^* \leftarrow s_{ls};$
- 8 count ← 0
- 9 while count $\neq n_{iter}$ do

 $s' \leftarrow Perturbation(s^*, \alpha)$: 10 $s_{ic} \leftarrow LS(s')$: 11 P ← P U s' U sk: 12 if $f(s') < f(s^*)$ then 13 $s^* \leftarrow s'$: 14 count $\leftarrow 0$: 15 16 else $count \leftarrow count + 1$: 17 return 9 : 18

- Best solution found so far (take f(s*) = +∞)
 - ▶ H_ω: set of available customers of data set H
 - ▶ Initializing the set of feasible solutions

Methodology: Route Selector Model (RSM)

- The ILS algorithm generates a set R_{ω} of feasible routes for each scenario $\omega \in \Omega$.
- Note that all routes in R_{ω} respect for the TWAVRP:
 - Capacity of the vehicles;
 - Time-windows of the customers;
- The MILP aim is to choose the most appropriate subset of routes from R_ω, assigning an endogenous time window to each client, overall scenarios.

Methodology: Route Selector Model (RSM)

- Take from R_{ω} :
 - 1. f_{jr}^{ω} as the starting time of service on client *j* on the route *r* in scenario ω ;
 - 2. c_r^{ω} as the cost to choose a route $r \in R_{\omega}$ in scenario ω ;
 - 3. x_{jr}^{ω} as a binary parameter equal to one if client *j* belongs to route $r \in R_{\omega}$ in scenario ω , 0 otherwise.
- Customer $j \in H$ must be delivered at time window $[e_j, l_j]$.
- Consider u_r^{ω} as a binary variable equal to one if route $r \in R_{\omega}$ is selected, 0 otherwise.
- *y_i* as a continuous variable that measures the starting time of the endogenous time window of customer *i* ∈ *H*.
- *w_i* gives the time window width of customer *i*.

Methodology: Route Selector Model (RSM)

$$\min\sum_{\omega\in\Omega}p_{\omega}c_{r}^{\omega}u_{r}^{\omega}$$
(1)

subject to

$$\sum_{r \in R_{\omega}} x_{jr}^{\omega} u_r^{\omega} = 1 \qquad \forall j \in H, \, \omega \in \Omega$$
(2)

$$\sum_{r \in R_{\omega}} f_{jr}^{\omega} x_{r}^{\omega} u_{r}^{\omega} \ge y_{j} \qquad \forall j \in H, \, \omega \in \Omega$$
(3)

$$\sum_{r \in R_{\omega}} f_{jr}^{\omega} x_{jr}^{\omega} u_{r}^{\omega} \le y_{j} + w_{i} \qquad \forall j \in H, \, \omega \in \Omega$$
(4)

$$y_j \in [e_j, I_j - w_j] \qquad \forall j \in H, \, \omega \in \Omega$$
 (5)

 $u_r^{\omega} \in \{0, 1\} \qquad \forall \omega \in \Omega, r \in R_{\omega}.$ (6)

Computational experiments: TWAVRP Instances

• Each instance considers a different combination of:

- Number of customers
- Vehicle capacity
- Demand for each scenario
- Probability of each scenario
- Exogenous time windows
- Size of endogenous time windows
- Travel costs
- Travel times
- The instance set comprises ninety instances divided into two classes: small instances and large ones.

Computational experiments: Experiments

- The experiments compare our ILS based-algorithm with the *Branch-and-Cut* (B&C) proposed by [Dalmeijer e Spliet 2018]
- Algorithm 4 was executed five times on each instance.
 - This number was tuned through preliminary tests in which we obtained a good trade-off between quality and computational effort.
- n_{iter} and α were tuned by Irace package [López-Ibáñez et al. 2016].
- we generated 200 training instances by using the instance generator proposed by [Dalmeijer e Spliet 2018].
- The values returned by the *Irace* package at the end of this test were $n_{iter} = 100$ and $\alpha = 0.35$.

Computational experiments: Experiment 1

Table 1: Average results aggregated by number of customers (10 instances per line, 5 ILS executions per instance)

Instance	CPU time (seconds)		Gaps		
N. customers	B&C	ILS	ILS+RSM	Gap*(%)	Gap(%)
10	0.1	4.50 ± 0.29	6.61 ± 0.56	0.34 ± 1.00	0.41 ± 1.02
15	4.5	16.50 ± 1.17	26.25 ± 1.86	0.00 ± 0.18	0.11 ± 0.25
20	2.2	39.06 ± 2.01	80.30 ± 7.49	0.02 ± 0.05	0.06 ± 0.10
25	12.4	68.48 ± 2.03	153.29 ± 18.56	0.06 ± 0.14	0.27 ± 0.78
30	544.0	107.27 ± 3.40	284.38 ± 12.62	0.04 ± 0.10	0.28 ± 0.39
35	1,531.7	161.59 ± 9.48	501.77 ± 97.94	0.02 ± 0.13	0.29 ± 0.42
40	3,252.0	224.33 ± 6.11	749.92 ± 41.11	0.10 ± 0.52	0.72 ± 0.73
45	3,600.0	289.34 ± 28.78	990.15 ± 172.79	-0.69 ± 0.83	-0.18 ± 1.61
50	3,600.0	372.98 ± 24.41	1,743.16 ± 261.71	-1.89 ± 0.12	-1.62 ± 1.31

Computational experiments: Experiment 1

Table 2: Results for instances with 45-50 customers (best UB values appear in bold)

Instance		B&C by [Dalmeijer e Spliet 2018]		ILS + RSM	
#	N. customers	LB	UB	Best UB	Avg UB
71	45	49.52	51.78	51.22	51.41
72	45	50.73	52.13	51.86	52.94
73	45	41.50	41.70	41.95	42.24
74	45	47.25	47.84	47.96	48.16
75	45	48.77	49.86	49.47	50.02
76	45	48.38	52.09	49.90	50.03
77	45	50.09	51.18	51.18	51.25
78	45	52.02	53.95	53.35	53.74
79	45	47.45	48.21	48.27	48.69
80	45	49.57	50.57	50.61	50.78
81	50	56.81	58.85	58.16	58.29
82	50	51.50	53.20	52.98	53.03
83	50	57.45	60.67	58.77	58.89
84	50	52.31	56.38	54.09	54.23
85	50	53.74	56.07	55.06	55.26
86	50	51.68	54.76	53.02	53.16
87	50	52.47	54.14	53.81	53.87
88	50	54.82	56.91	56.27	56.36
89	50	59.23	61.51	60.32	60.62
90	50	57.68	59.55	58.95	59.23

Conclusion

- We studied the Time Windows Assignment Vehicle Routing Problem (TWAVRP).
- We compared the results of our algorithm (ILS+RSM) with the Branch-and-Cut proposed by [Dalmeijer e Spliet 2018].
- The ILS+RSM presented competitive results, concerning both solution quality and computational effort, in particular for the larger size instances involving 45 and 50 customers.

Conclusion

• Future avenues concern:

- i incorporating new complicating constraints deriving from the real-world case study in the metaheuristic;
- ii testing other neighborhood-based metaheuristics as generators of routes;
- iii testing multiple calls to the RSM with different pools of routes.

References

• CAMPELO, P. et al. Consistent vehicle routing problem with service level agreements: A case study in the pharmaceutical distribution sector. European Journal of Operational Research, v. 273, n. 1, p. 131–145, 2019.

DALMEIJER, K.; SPLIET, R. A branch-and-cut algorithm for the time window assignment vehicle routing problem.Computers Operational Research, v. 89, p. 140–152, 2018.

DESROCHERS, M.; DESROSIERS, J.; SOLOMON, M. A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows. Operations Research, v. 40, n. 2, p. 342–354, 1992.

SPLIET, R.; GABOR, A. F. The time window assignment vehicle routing problem. Transportation Science, v. 49, n. 4, p. 721–731, 2015.

TA S, D.; JABALI, O.; Van Woensel, T. A Vehicle Routing Problem with Flexible Time Windows. Computers Operations Research , v. 52, p. 39–54, 2014.