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Minimun Correlation Clustering with Partial Information

• A finite set of invited people ; 

• an arbitrary number of tables   ; 

• : a list of couples of guests that want to sit at the same table (solid edges); 

• : a list of couples of guests that want to sit at different tables (dashed edges). 

Task: find an assignment of tables to the invited people that minimises the sum of the couples 
from  that are assigned to different tables and the couples from  that are assigned to the 
same table.

V := {v1, …, vn}
T := {t1, t2, t3, …}
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Valued Constraint Satisfaction Problems

Valued structure: a set  of cost functions over a domain .Γ D

An instance of the valued constraint satisfaction problem for a valued structure  , , 

is given as an objective function, i.e., an expression  of the form 

  

where  and the  are variables from . 

Task: minimise the objective function, that is, find  
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VCSPs over infinite domains

Theorem (Kozik-Ochremiak, 2015 + Thapper-Živný, 2016 + Kolmogorov-Krokhin-Rolinek, 2017) 

The VCSP for any finite-domain valued structure is either in P or NP-complete.  
(Subject to the computational complexity dichotomy for finite-domain CSPs proved by Bulatov and by Zhuk in 2017.)

Examples of infinite-domain VCSPs: 

• Minimum Correlation Clustering with Partial Information (NP-complete); 
• Minimum Feedback Arc-Set (NP-complete); 
• Linear Programming (Polynomial-time tractable); 
• Linear Least Square (Polynomial-time tractable).

Theorem (Bodirsky-Grohe, 2008) 
For every computational decision problem  there exists an infinite-domain valued structure  
such that  is Turing-equivalent to VCSP .
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Piecewise Linear Cost Functions

A cost function  is piecewise linear (PL) if its domain, , can be 
represented as the union of finitely many polyhedral sets, relative to each of which  is given by 
a linear expression.

f : ℚn → ℚ ∪ {+∞} dom( f )
f(x)

Proposition 
Let   be the valued structure containing all PL cost functions. Then  is NP-complete.*Γ VCSP(Γ)

Examples of infinite-domain VCSPs: 

• Minimum Correlation Clustering with Partial Information (NP-complete); 
• Minimum Feedback Arc-Set (NP-complete); 
• Linear Programming (Polynomial-time tractable); 
• Linear Least Square (Polynomial-time tractable).

} 
Can be encoded  
as VCSPs using  

PL cost functions

We adopt the convention .f (x) = + ∞ ⇔ x ∉ dom( f )

* The computational complexity of the VCSP for a valued structure containing infinitely many cost functions depends on 
the representation of the input.



PL VCSPs with a fixed number of variables 

* The computational complexity of such an algorithm depends on the representation of the cost functions in the input.

In the case of a valued structure  containing infinitely many cost functions, it makes sense to consider 
the restriction of  to instances over a fixed set of variables.

Γ
VCSP(Γ)

Theorem (Bodirsky-Mamino-V., 2020)  

Let  be a finite set of variables. Then there is a polynomial-time algorithm that solves the 
VCSP for all PL cost functions having variables in . * 

V
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Representing PL Cost Functions

Representation of a PL cost function: a list of linear constraints, specifying the polyhedral sets in 

which the domain is partitioned, and a list of linear polynomials, defining the value of the function 

relatively to each polyhedral set.  

• The linear constraints and the linear polynomials are encoded by the list of their rational coefficients.  

• The constants for (numerators and denominators of) rational coefficients are represented in binary.  



Representing PL Cost Functions

Representation of a PL cost function: a list of linear constraints, specifying the polyhedral sets in 

which the domain is partitioned, and a list of linear polynomials, defining the value of the function 

relatively to each polyhedral set.  

• The linear constraints and the linear polynomials are encoded by the list of their rational coefficients.  

• The constants for (numerators and denominators of) rational coefficients are represented in binary.  

Size of an 
instance of the 

VCSP for PL cost 
functions (with fixed many 

variables):= 
# of bits required to represent the 

objective function. 



A Poly-Time Algorithm for PL VCSPs with n variables

Idea: compute the feasible regions of linearity and solve a linear program in each of them.

Actually, the regions of linearity are bounded by a 

polynomial in  

                                   

where # of polynomials appearing in the finite set of 
linear constraints defining the domain of some cost function 
in the input.
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k :=

How many regions of linearity are there?

A priory, exponentially many in the size of the instance.

Theorem (Bodirsky-Mamino-V., 2020)  

Let  be a finite set of variables. Then there is a polynomial-time algorithm that solves the 
VCSP for all PL cost functions having variables in .  

V
V



Linear Programming with Strict Linear Inequalities

In a LP instance the linear constraints defining the convex domain of a linear cost function are 
usually linear weak inequalities ( ). Our algorithm can deal also with linear strict inequalities  
( ) by an application of Motzkin Transposition Theorem.

a⊤x ≤ b
a⊤x < b

Let . To solve the Linear 
Programming Feasibility with constraints 

, we solve the linear program 

                                     subject to      

                                  

If this is infeasible or has an optimal solution with the 
first  coordinates equal , then   has 
a solution and we accept; otherwise we reject.

A ∈ ℚk1×d, B ∈ ℚk2×d

Ax < 0, Bx ≤ 0

min
k1+1

∑
j=1

(−yj)

ATy + BTz = 0
−y ≤ 0
−z ≤ 0.

k1 0 Ax < 0, Bx ≤ 0

Theorem (Motzkin, 1936) 

Let  be matrices such that 

. The system   

  

has a solution  if, and only, if the system  

   

does not admit a solution  such 
that .

A ∈ ℚk1×d, B ∈ ℚk2×d

max(k1, d) ≥ 1

{Ax < 0
Bx ≤ 0

x ∈ ℚd

{ATy + BTz = 0
y ≥ 0, z ≥ 0

(y, z) ∈ ℚk1+k2

y ≠ (0,…,0)



What is next:  
semialgebraic VCSPs with fixed number of variables 

A function  is called semialgebraic if its domain can be represented as the 
union of finitely many basic semialgebraic sets of the form where  
 is a conjunction of (weak or strict) polynomial inequalities with integer coefficients, relative to 

each of which  is given by a polynomial expression with integer coefficients. 

f : ℝn → ℝ ∪ {+∞}
{x ∈ ℝn ∣ χ(x)}

χ
f(x)

In general, the VCSP for all semialgebraic cost function is equivalent to the existential theory of the 
reals, which is in PSPACE.

The restriction of the feasibility problem associated with a semialgebraic VCSP to a fixed number of 
variables is solvable in polynomial-time by cylindrical decomposition. 



Thank you


