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Motivation

Decision making, when and why?

� Event based

(a) Status Quo (b) Event (c) Decision making

Figure: Event based decision making

       Status Quo                Event    

                               Decision Making                                                                
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Motivation

Decision making, when and why?

� Discrete time steps

(a) Status Quo (b) Decision making (c) Events in period

Figure: Decision making for periods

       Status Quo                Event 1    Event 2    Event 3

Decision Making                                                                Decision Making
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Motivation

Discrete time steps

Decentralized problems

Planning management

Stochastic games

Risk calculations
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(Discrete) Generalized Semi-Markov decision processes

GSMDPs
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(Discrete) Generalized Semi-Markov decision processes

Example

Tabelle1

Seite 1

Actions: Safe-Modus Risk-Modus
Events: Prob Effect Prob Effect
Error 1 -1 -1
Error 2 -1 to -2 -2

Fatal Error -3 -3 to -4
Self-Repair 2 - -

10,00 % 15,00 %
20,00 % 25,00 %
5,00 % 10,00 %

35,00 %

4 3 2 1 0

Figure: Safe-Modus: Transitions of the example
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(Discrete) Generalized Semi-Markov decision processes

GSMDP Formulation

A GSMDP is given by a 7-tuple (S,A, E ,C,P,R,F ) with

S a set of states

A a set of actions

E a set of events (decreasing priority)

C : S ×A× E → {0, 1} mapping for (in)active events

P : S × E → S transition function from state to state by an event

R : S × E0 × S → R rewards for state transitions by an event

F : E × N→ [0, 1] probabilities for events depending on time T

Problem:

π∗ : S × T1 × ...× TE → A with Ti = N optimal policy with best rewards!
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(Discrete) Generalized Semi-Markov decision processes

Special subclass of a GSMDP

A GSMDP is given by a 7-tuple (S,A, E ,C,P,R,F ) with

S a set of states

A a set of actions

E a set of events (decreasing priority)

C : S ×A× E → {0, 1} mapping for (in)active events

P : S × E → S transition function from state to state by an event

R : S × E0 × S → R rewards for state transitions by an event

F : E × N→ [0, 1] probabilities for events depending on time T

→ If one or more events are triggered, all are reseted next period!

Problem:

π∗ : S → A optimal policy with best rewards!
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Solution approaches

Exact and approximative proceedings

Transform the GSMDP to a MDP with similar behaviour

What is the problem?

� Infinite state space for SMDP !

� An exponential number of path or event combinations Γ ∈ O(2|E|), for the
computation of PMDP ,RMDP !

⇒ Building a MDP has an exponential running time
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Solution approaches

Exact proceeding - Limit for no event

t is the time step

e ∈ E an event

e0 ∈ E0\E means no event is triggered

P(e|t) the distribution function

� Steps with no triggering events: P(e0|t)↘ 0

� P(e|t − 1) ≤ P(e|t)
� limt→∞ P(e|t) = 1

� P(e0|t) :=
∏|E|

e=1(1− P(e|t))
� limt→∞ P(e0|t) = 0
� ∀ε > 0 ∃t0 ∈ N ∀t ≥ t0 : P(e0|t) < ε

� So t ∈ (t0,∞) is negligible s

s(1)

s(2)

s(3)

s(4)

s(t0)

...

e0

e0

e0

e0

< ε

Figure: Cut of
pseudo-states with an
irrelevant probability
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Solution approaches

Exact proceeding - Influence of events

� Zero-steps

� Events e ∈ E have a chance to be triggered
� Build Γ′ ⊆ Γ with all paths for evaluation
� γ =< st , x1, ..., x|E| >∈ Γ′ with xi ∈ {ei , ei} is well defined
� C(s, a, e) deactivates some events after passing some states!

s0

s1

s2

s3

s4

e1

e2

e3

e4

γ1 :

ZZe2

ZZe4

ZZe1

e1

e3

e4

e2

e3

Figure: Different events lead to seperate paths
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Solution approaches

Exact proceeding - Building a MDP

� Build a MDP (P,R, p)

� P and R are computed evaluating all zero-steps Γ
⇐ Sum up probabilities and rewards for paths γ with the same (s, a, s ′)
� MDPs are solvable in polynomial time!
� Approximative approaches build with an subset Γ′
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Solution approaches

Γ-Method

The Γ-Method is more intuitive:

� Compute the event probabilities for triggering P(ei )

Fix randomly a subset of E to 0 or 1 depending on P(ei )

Unfixed events gives us a set of all paths Γ′ ⊆ Γ

� Take γ ∈ Γ′ and check the path for regularity

� Evaluate all regular γ ∈ Γ′

Combine results for P and R in a memory list
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Solution approaches

Γ-Method

Fixing Probabilities e1 e2 e3

P(ei ) 0.8 0.6 0.4
P(ei ← {0, 1}) 0.6 0.2 0.2

P(ei ← 0|ei ← {0, 1}) 0.12 0.12 0.08
P(ei ← 1|ei ← {0, 1}) 0.48 0.08 0.12

Γ′example = {< 1, 0, 0 >, < 1, 0, 1 >, < 1, 1, 0 >, < 1, 1, 1 >} ( Γ
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Figure: Check for regularity and evaluating γ ∈ Γ′
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Solution approaches

Γ-Method

Facts

� Exact for no fixing!

� Running time Θ(Ω · |E|2 + |S|), exact one with Ω = 2|E|

� For a given Ω the algorithm fixes

d|E| − log2 Ωe
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Solution approaches

E-Method

The E-Method is more constructive and provident:

� Set an upper limit to the memory list Ω

� Evaluate every list element event by event (subpaths)

Combine list elements with same future behavior (state, blockings,...)

If the limit is exceeded: delete a random list element

� At the end there are no more than S list elements with expected rewards and
probabilities

Facts

� Exact for no list limit!

� Running time Θ(Ω3 · |E|+ |S|), exact one with Ω = 2|E|/2
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Solution approaches

E-Method

Fixing Probabilities e1 e2 e3

P(ei ) 0.8 0.6 0.4

Li = [S, Eact ,P,R]

s0

s1

s2

s3

ZZe1,ZZe2

ZZe1,ZZe3

ZZe1
e1

e3

e3

e2 e2

e2, e3

Initializing L

[s0, <e1, e2, e3>, 1.00, 0]

After Event e3

[s3, < >, 0.32, r1 + r3]
[s1, < >, 0.48, r1]
[s2, < >, 0.12, r2]
[s0, < >, 0.032, r4]
[s0, < >, 0.048, r0]
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Results

Experimental results
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Results

Results - Relative Error
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Results

Results - Running Time

Table: Relative run times for |S| = 100 and |A| = 4

method and |E| Ω = 20 Ω = 40 Ω = 60 Ω = 80 Ω = 100

E-method, |E| = 15 0.985 0.973 0.981 0.985 1.004
Γ-method, |E| = 15 0.791 1.379 1.385 2.543 2.531
E-method, |E| = 20 0.840 0.953 0.971 0.988 0.992
Γ-method, |E| = 20 0.368 0.689 0.689 1.364 1.365
E-method, |E| = 25 0.607 0.863 0.929 0.946 0.957
Γ-method, |E| = 25 0.204 0.303 0.305 0.613 0.610
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Conclusion and future work

Conclusion and future work
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Conclusion and future work

Conclusion and future work

� E-Method is almost better to approximate optimal solutions than Γ-Method

� E-Method Θ(Ω3 · |E|+ |S|), exact one with Ω = 2|E|/2

� Γ-Method Θ(Ω · |E|2 + |S|), exact one with Ω = 2|E|

� Expand the solutions to the more general problem (without special subclass)

� With a precalculation ∆ the results and running times can be improved

Ω∗ ≤ 2∆ ≤ 2|Eact |/2 < 2|E| = |Γ|

� Also the relative error can be estimated by ∆ with no exact solution
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Conclusion and future work

Questions

The algorithms are able to compute randomized solutions (near to the exact one
with more running times). Start solutions are relevant for many planing problems
and need also human expertise. So the results can support planing management
with initial computations.

Questions?
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