| Introduction | System Model | MINLP | Lagrangian Relaxation | Solution method | Experiments |
|--------------|--------------|-------|-----------------------|-----------------|-------------|
| •0000        | 00           | 0000  | 00000                 | 0000            | 00000000    |

# A Lagrangian approach to Chance Constrained Routing with Local Broadcast

# Laura Galli

with M. Cacciola A. Frangioni G. Stea

Dipartimento di Informatica, Università di Pisa Dipartimento di Ingegneria dell'Informazione, Università di Pisa

(online) 18th Cologne-Twente Workshop 14th September, 2020

| Introduction | System Model | MINLP | Lagrangian Relaxation | Solution method | Experiments |
|--------------|--------------|-------|-----------------------|-----------------|-------------|
| 0●000        | 00           | 0000  | 00000                 |                 | 00000000    |
| Introduct    | ion          |       |                       |                 |             |

**Mobile cellular networks** play a pivotal role in emerging Internet of Thing (IoT) applications.

Many of these applications are characterized by the need of **routing messages** :

- within a given local area
- constraints about timeliness
- constraints about reliability (i.e., probability of reception)
- the target area is defined by the application.

| Introduction | System Model | MINLP | Lagrangian Relaxation | Solution method | Experiments |
|--------------|--------------|-------|-----------------------|-----------------|-------------|
| 00000        |              | 0000  | 00000                 | 0000            | 00000000    |
| Motivat      | ion          |       |                       |                 |             |

*Traditional* **LTE-A** *tools* can support these services, but are *unsuitable* to this task because they require too much energy.

For this reason, a new communication framework as been proposed.



Figure: New communication framework.

| Introduction | System Model | MINLP | Lagrangian Relaxation | Solution method | Experiments |
|--------------|--------------|-------|-----------------------|-----------------|-------------|
| 00000        | 00           | 0000  | 00000                 |                 | 00000000    |
| Motivatio    | on (cont.)   |       |                       |                 |             |

- eNB communicates via DL (i.e., vertical) transmissions.
- UEs communicate via D2D (i.e. horizontal broadcast) transmissions.
- Vertical links are reliable but costly.
- Horizontal links are free, but not reliable.
- UEs can act as multi-hop relays (horizontal transmissions are scheduled by the eNB, which issues grants to the UEs that may transmit).

| Introduction<br>0000● | System Model | MINLP<br>0000 | Lagrangian Relaxation<br>00000 | Solution method | Experiments<br>00000000 |
|-----------------------|--------------|---------------|--------------------------------|-----------------|-------------------------|
| CCUMRF                | C            |               |                                |                 |                         |

- Given the position of the UEs, transmission power, modulation and coding scheme, we can model the probability that a certain horizontal transmission is successful.
- The Chance-Constrained Unicast-Multicast Routing Problem:

## CCUMRP

Select vertical and horizontal multi-hop transmissions to guarantee that all UEs receive the information with a certain level of reliability, within a given time limit, and at minimum energy cost.

| Introduction | System Model | MINLP | Lagrangian Relaxation | Solution method | Experiments |
|--------------|--------------|-------|-----------------------|-----------------|-------------|
| 00000        | ●0           | 0000  |                       | 0000            | 00000000    |
| System N     | Nodel        |       |                       |                 |             |

We model the system as a graph G = (N, A)

- $N = \{0\} \cup N'$  (0 is the eNB and N' represents the UEs)
- the arc set  $A = A' \cup A''$  consists of two types of arcs:
  - vertical arcs A' of the form (0, i) for all  $i \in N'$ , representing a DL transmission between the eNB the UE i having probability 1 to be decoded successfully at i but high energy cost;
  - horizontal arcs A'' of the form (i, j) for  $i \neq j \in N'$ , representing a D2D transmission from i to j having probability  $0 < P_{ij} < 1$  to be decoded successfully at j, but low (energy) cost.



The **problem** is to transmit **from the eNb to the entire floorplan** (i.e., all the UEs).

- **Initial stage:** eNB transmits the message to a subset of UEs using vertical transmission.
- Following stages: only horizontal transmissions are allowed.
- A node i ∈ N' can issue an horizontal transmission at a given stage only if granted permission from the eNB.
- At most *M* grants can be assigned in each stage.
- The broadcast must be **over in** k **stages.**
- Each UE must receive the message with **probability**  $\geq \alpha$ .

The **objective** is to minimize the number of vertical transmissions as well as the numbers of grants.

| Introduction | System Model | MINLP | Lagrangian Relaxation | Solution method | Experiments |
|--------------|--------------|-------|-----------------------|-----------------|-------------|
| 00000        | 00           | ●000  | 00000                 |                 | 00000000    |
| MINLP n      | nodel        |       |                       |                 |             |

#### Variables:

•  $x_i \in \{0,1\}$ ,  $i \in N'$ : if node i is selected for initial set of UEs at stage 1

• 
$$p_i^h \in [\,0\,,\,1\,]$$
,  $i \in N'$ ,  $h \in K$ : probability of node  $i$  at stage  $h$ 

•  $g_i^h \in \{0,1\}$ ,  $i \in N'$ ,  $h \in K'$ : if node i is granted transmission at stage h

$$\min \sum_{i \in N'} x_i + \sum_{h \in K'} \sum_{i \in N'} \beta_i^h g_i^h$$

$$p_i^1 = x_i$$

$$i \in N' \quad (2)$$

$$p_i^k \ge \alpha$$

$$i \in N' \quad (3)$$

$$1 - p_i^h \ge (1 - p_i^{h-1}) \prod_{(j,i) \in A''} (1 - g_j^h p_j^{h-1} P_{ji})$$

$$i \in N' \quad , h \in K' \quad (4)$$

$$\sum_{i \in N'} g_i^h \le M$$

$$k \in K' \quad (5)$$

$$x_i \in \{0,1\}$$

$$i \in N' \quad , h \in K \quad (7)$$

$$g_i^h \in \{0,1\}$$

$$i \in N' \quad , h \in K' \quad (8)$$



- Objective function (1) minimizes the number of vertical transmissions in the first stage (h = 1) and the cost of grants in the the subsequent stages (h ∈ K').
- Constraints (3) impose that each UE node i ∈ N' is ultimately (at stage k) reached with probability at least α.
- Constrains (4) (*nonlinear nonconvex*) represent the **probability** that node *i* at stage *h* has **not been reached**.
- Constraints (5) **bound** the total number of **grants** available at each stage.

Without probability constraints (4), the problem would be almost trivial.

| Introduction<br>00000 | System Model | MINLP<br>oo●o | Lagrangian Relaxation | Solution method<br>0000 | Experiments<br>00000000 |
|-----------------------|--------------|---------------|-----------------------|-------------------------|-------------------------|
| Probabili             | ity constra  | ints (4)      |                       |                         |                         |

- $\bullet~\mbox{Take}~\mbox{log}$
- $\implies$  ill-defined when  $p_i^h = 1$
- $\bullet$  Take a constant  $\bar{p} < 1$  "arbitrarily close to  $1^{\prime\prime}$
- $\bullet \implies \mathsf{replace} \ (2) \ \mathsf{and} \ (7)$

$$\begin{aligned} p_i^1 &= x_i & i \in N' \\ 0 &\leq p_i^h &\leq 1 & i \in N' \ , \ h \in K' \end{aligned}$$

respectively, with:

$$\begin{aligned} p_i^1 &= x_i \bar{p} & i \in N' & (9) \\ 0 &\leq p_i^h \leq \bar{p} & i \in N' , \ h \in K'. & (10) \end{aligned}$$



- Note that  $g_j^h = 0 \implies \log(1 g_j^h p_j^{h-1} P_{ji}) = 0$
- $\implies$  rewrite constraints (4) as:  $\log(1-p_i^h) \ge \log(1-p_i^{h-1}) + \sum_{(j,i)\in A''} g_j^h \log(1-p_j^{h-1}P_{ji}) \ i \in N' h \in K' \setminus \{2\}$ (11)
  and

$$\log(1-p_i^2) \ge \log(1-\bar{p})x_i + \sum_{(j,i)\in A''} g_j^2 \log(1-P_{ji})x_j \quad i \in N' \quad h = 2$$
(12)

•  $\implies$  (11) and (12) are linear with respect to variables  $g_i^h$ 

• no continuous variables in RHS of (12)

| Introduction<br>00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | System Model<br>00                             | MINLP<br>0000                    | Lagrangian Relaxation<br>●0000                               | Solution method             | Experiments<br>00000000 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------|--------------------------------------------------------------|-----------------------------|-------------------------|
| Lagrang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gian Relaxa                                    | ation                            |                                                              |                             |                         |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Relax (11) an                                  | d (12) wit                       | th <b>Lagrangian m</b> u                                     | Itipliers $\lambda_i^h \ge$ | 0:                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\min\sum_{i\in N'} x_i +$                     | $-\sum_{i\in N'}\beta_i^2$       | $g_i^2 + \sum_{2 \le h < k} \sum_{i \in N'} \beta_i^{h+1} g$ | $_{i}^{h+1}$                |                         |
| $+\sum_{i\in N'} \lambda_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\lambda_i^2 \left( \log(1-\bar{p}) x \right)$ | i                                |                                                              |                             |                         |
| $+\sum_{i\in N'} \sum_{i\in N'} \sum_{$ | $\sum_{(j,i)\in A^{\prime\prime}} g_j^2 \log$  | $(1-P_{ji})x$                    | j                                                            |                             |                         |
| $+\sum_{2\leq h< i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $_k \sum_{i \in N'} (\lambda_i^{h+1} -$        | $-\lambda_i^h)\log(1)$           | $(-p_i^h)$                                                   |                             |                         |
| $+\sum_{2\leq h< i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\sum_{k \in N'} g_i^{h+1} \sum_{i \in N}$     | $\sum_{(i,j)\in A''}\lambda_j^h$ | $^{+1}\log(1-p_i^h P_{ij})$                                  |                             |                         |
| $+\sum_{i\in N'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-\lambda_i^k \log(1-p_i^k)$                   |                                  |                                                              |                             |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $p_i^1 = x_i$                                  |                                  |                                                              |                             | $i \in N'$              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $p_i^k \ge \alpha$                             |                                  |                                                              | i                           | $\in N'$                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\sum_{i \in N'} g_i^h$                        | $\leq M$                         |                                                              | j                           | $h \in K'$              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $x_i \in \{0, 1\}$                             |                                  |                                                              |                             | $i \in N'$              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0 \le p_i^h \le 1$                            |                                  |                                                              | $i\in N'$ ,                 | $h \in K$               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $g_i^h \in \{0,1\}$                            |                                  |                                                              | $i\in N'$ , $i$             | $h \in K'$              |

### • $\implies$ problem decomposes into k sub-problems

| 00000    | 00          | 0000 | 0000 |  |
|----------|-------------|------|------|--|
| Sub-prob | lem $h = 1$ | L    |      |  |

- The first sub-problem contains variables  $x_i$  and  $g_i^2$ ,  $i \in N'$ .
- Collect "like terms".
- Observe that there is no point in setting  $g_i^2 = 1$  if  $x_i = 0$ .

$$\begin{split} \min \ \sum_{i \in N'} \left[ (1 + \lambda_i^2 \log(1 - \bar{p})) x_i + \left( \beta_i^2 + \sum_{(i,j) \in A''} \lambda_j^2 \log(1 - P_{ij}) \right) g_i^2 \right] \\ \sum_{i \in N'} g_i^2 &\leq M \\ g_i^2 &\leq x_i \\ x_i, \ g_i^2 \in \{0, 1\} \end{split} \qquad \qquad i \in N' \end{split}$$

- Nonlinear operations are applied to constants  $\rightarrow \{0,1\}$  LP.
- Special structure of the constraints  $\rightarrow$  solved in  $\mathcal{O}(n \log n)$ .



• Each *h*-th sub-problem contains variables  $g_i^{h+1}$  and  $p_i^h$ ,  $i \in N'$ .

$$\min \sum_{i \in N'} \left[ (\lambda_i^{h+1} - \lambda_i^h) \log(1 - p_i^h) + (13) \right]$$

$$(\beta_i^{h+1} + \sum_{(i,j) \in A''} \lambda_j^{h+1} \log(1 - p_i^h P_{ij})) g_i^{h+1} \right]$$

$$0 \le p_i^h \le \bar{p} \qquad i \in N'$$

$$\sum_{i \in N'} g_i^{h+1} \le M \qquad (14)$$

$$g_i^{h+1} \in \{0,1\} \qquad i \in N'$$

$$(15)$$

- Each variable  $p_i^h$  interacts with a variable  $g_i^{h+1}$ .
- The term is highly nonlinear:  $f_i^h(p,g) = (\lambda_i^{h+1} \lambda_i^h) \log(1-p) + (\beta_i^{h+1} + \sum_{(i,j) \in A''} \lambda_j^{h+1} \log(1-pP_{ij}))g.$



• By computing the two constants for  $g \in \{0, 1\}$ :

$$p_i^{h,g} = \operatorname{argmin}\{\, f_i^h(\, p \,,\, g \,) \,:\, 0 \leq p \leq ar{p} \,\}$$

- the sub-problem h can be rewritten as  $\min \left\{ \sum_{i \in N'} f_i^h(p_i^{h,1}, 1) g_i^{h+1} + f_i^h(p_i^{h,0}, 0) (1 - g_i^{h+1}) : (14) , (15) \right\}$
- $\implies$  easily solved in  $\mathcal{O}(n \log n)$ .
- Computing  $p_i^{h,0}$  is trivial: minimize the monotone function  $(\lambda_i^{h+1} \lambda_i^h) \log(1-p)$  on  $p \in [0, \bar{p}] \implies$  the optimum is one of the two extremes.
- Computing p<sub>i</sub><sup>h,1</sup> requires to solve a more complex one-dimensional minimization problem of the form:
   min { f(p) = c log(1 − p) + ∑<sub>i∈N'</sub> a<sub>i</sub> log(1 − pb<sub>i</sub>) : 0 ≤ p ≤ p̄ } (16)
- Use a simple *globalization* of *Newton's method*.

| Introduction | System Model | MINLP | Lagrangian Relaxation | Solution method | Experiments |
|--------------|--------------|-------|-----------------------|-----------------|-------------|
| 00000        |              | 0000  | 0000●                 | 0000            | 00000000    |
| Sub-prob     | lem $h = k$  |       |                       |                 |             |

• The k-th sub-problem contains variables  $p_i^k$ ,  $i \in N'$ .

$$\min\left\{\sum_{i\in N'} -\lambda_i^k \log(1-p_i^k) : \alpha \le p_i^k \le \bar{p}\right\}$$

- Separable over *i*.
- $\lambda_i^k \ge 0 \implies$  objective function is convex.
- $\implies$  the optimum is the left endpoint  $p_i^k = \alpha$ .

| Colution              | mathad       |               |                                |                 |                         |
|-----------------------|--------------|---------------|--------------------------------|-----------------|-------------------------|
| Introduction<br>00000 | System Model | MINLP<br>0000 | Lagrangian Relaxation<br>00000 | Solution method | Experiments<br>00000000 |

- To solve the Lagrangian Dual problem we use the freely available implementation of the (generailized) *proximal Bundle method*, provided by the NDOSolver/FiOracle suite.
- Lagrangian heuristics
- Lagrangian-based branch-and-bound

| Introduction | System Model | MINLP | Lagrangian Relaxation | Solution method | Experiments |
|--------------|--------------|-------|-----------------------|-----------------|-------------|
| 00000        |              | 0000  | 00000                 | 0●00            | 00000000    |
| Lagrangi     | an heurist   | cics  |                       |                 |             |

- Use integer, but (typically) not feasible solution from the Lagrangian function.
- Note that continuous variables  $p_j^h$  can be computed from the  $x_i$  and  $g_i^h$ .
- If the relaxed constraints (3) are violated  $\implies$  not enough transmission to ensure probability "at least"  $\alpha$  of reception.
- Given an integer solution, we define the scores as follows:

$$\begin{aligned} S(x_i) &= \sum_{j: p_j^k < \alpha} P_{i,j}^2 (\alpha - p_j^k)^3 \delta_i \\ S(g_i^h) &= \sum_{j: p_j^k < \alpha} P_{i,j}^2 (\alpha - p_j^k)^3 p_i^{h-1} \end{aligned}$$

• The higher the connection  $P_{i,j}$  with users that did not receive the message  $\implies$  the higher the term  $(\alpha - p_i^k)$ .



- $x_i$  variables have a much larger cost than the  $g_i^h$  ones  $\implies$  scaling factor  $\delta_i < 1$ .
- The exponents of these factors can be changed to give more or less impact in the final score.
- Greedy: until we reach a feasible solution, we activate the variable with best score that does not violate (5).
- The algorithm can start from any integer solution satisfying (5) (e.g., the solution of the Lagrangian relaxation, the null solution).
- Another heuristic is based on the convexified solution obtained from the Lagrangian dual.
- This is a fractional solution, that can be rounded in order to find an integer one.

| Introduction | System Model | MINLP  | Lagrangian Relaxation | Solution method | Experiments |
|--------------|--------------|--------|-----------------------|-----------------|-------------|
| 00000        | 00           | 0000   | 00000                 |                 | 00000000    |
| lagrang      | ian-based    | Branch | -and-Bound            |                 |             |

- At each node, solve Lagrangian Dual with time limit of 1 sec.
- Run the heuristics based on integer solution.
- Branching rule based on 0/1 fixing of a binary variable.
- Look at the convexified solution and pick fractional x variable that has the closest value to 0.5.
- If all the x variables are already fixed, or take integer values in the convexified solution, choose a g variable with a similar rule.
- Branching first on the x variables makes sense since they are those that are likely to have the most impact on the solution of the problem.
- Visit strategy is the standard "best first": we pick the node that have the lowest lower bound.

| Introduction | System Model | MINLP | Lagrangian Relaxation | Solution method | Experiments |
|--------------|--------------|-------|-----------------------|-----------------|-------------|
| 00000        | 00           | 0000  | 00000                 | 0000            | ●0000000    |
| Experim      | ents         |       |                       |                 |             |

- Realistic scenarios generated via simulator SimuLTE.
- Instance:
  - number of UEs
  - radius (in meters) of the area
  - $\bullet\,$  required coverage probability  $\alpha$
- Comparison with BARON, and a combinatorial heuristic available in SimuLTE.
- Compiled with g++ 7.4.0, single-thread, 16-core Intel Xeon5120 CPU, 2.20GHz, 64Gb RAM, Ubuntu 18.04.

|    | Instanc | es       |       | В     | ARON |      |      |        | E     | 3&B  |      |      | CH   |
|----|---------|----------|-------|-------|------|------|------|--------|-------|------|------|------|------|
| #  | r       | $\alpha$ | time  | nodes | gap  | pgap | dgap | time   | nodes | gap  | pgap | dgap | pgap |
| 10 | 100     | 0.92     | 4.86  | 1     | 0.00 | 0.00 | 0.00 | 0.59   | 20    | 0.00 | 0.00 | 0.00 | 0.00 |
| 10 | 100     | 0.95     | 3.07  | 1     | 0.00 | 0.00 | 0.00 | 0.58   | 20    | 0.00 | 0.00 | 0.00 | 0.00 |
| 10 | 100     | 0.96     | 3.43  | 1     | 0.00 | 0.00 | 0.00 | 0.67   | 20    | 0.00 | 0.00 | 0.00 | 0.00 |
| 10 | 250     | 0.92     | 4.92  | 1     | 0.00 | 0.00 | 0.00 | 0.44   | 20    | 0.00 | 0.00 | 0.00 | 0.00 |
| 10 | 250     | 0.95     | 75.39 | 1     | 0.00 | 0.00 | 0.00 | 0.73   | 20    | 0.00 | 0.00 | 0.00 | 0.00 |
| 10 | 250     | 0.96     | 31.32 | 1     | 0.00 | 0.00 | 0.00 | 0.46   | 20    | 0.00 | 0.00 | 0.00 | 71.4 |
| 10 | 500     | 0.92     | 80.67 | 84    | 0.00 | 0.00 | 0.00 | 193.8  | 12323 | 0.00 | 0.00 | 0.00 | 71.4 |
| 10 | 500     | 0.95     | 44.45 | 52    | 0.00 | 0.00 | 0.00 | 44.00  | 2717  | 0.00 | 0.00 | 0.00 | 40.0 |
| 10 | 500     | 0.96     | 383.4 | 1597  | 0.00 | 0.00 | 0.00 | 229.1  | 5130  | 0.00 | 0.00 | 0.00 | 46.7 |
| 10 | 750     | 0.92     | 269.2 | 1778  | 0.00 | 0.00 | 0.00 | 153.42 | 2402  | 0.00 | 0.00 | 0.00 | 29.4 |
| 10 | 750     | 0.95     | -     | 715   | 4.00 | 0.00 | 4.00 | 208.5  | 6880  | 0.00 | 0.00 | 0.00 | 38.5 |
| 10 | 750     | 0.96     | -     | 717   | 13.0 | 0.00 | 13.0 | 29.87  | 1026  | 0.00 | 0.00 | 0.00 | 50.0 |
| 10 | 1000    | 0.92     | 1.78  | 1     | 0.00 | 0.00 | 0.00 | 79.81  | 2913  | 0.00 | 0.00 | 0.00 | 26.9 |
| 10 | 1000    | 0.95     | 1.42  | 1     | 0.00 | 0.00 | 0.00 | 210.0  | 13754 | 0.00 | 0.00 | 0.00 | 36.4 |
| 10 | 1000    | 0.96     | 0.82  | 1     | 0.00 | 0.00 | 0.00 | 1.91   | 120   | 0.00 | 0.00 | 0.00 | 63.6 |

Table: Computational results, time limit 300 seconds

|    | Instanc | es       |      | E     | BARON | 1    |      |       |       | B&B  |      |      | CH   |
|----|---------|----------|------|-------|-------|------|------|-------|-------|------|------|------|------|
| #  | r       | $\alpha$ | time | nodes | gap   | pgap | dgap | time  | nodes | gap  | pgap | dgap | pgap |
| 25 | 100     | 0.92     | -    | 1     | 3780  | 3050 | 120  | 121.6 | 164   | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 100     | 0.95     | -    | 17    | 100   | 0.00 | 100  | 98.45 | 130   | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 100     | 0.96     | -    | 18    | 80.0  | 0.00 | 80   | 57.56 | 84    | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 250     | 0.92     | -    | 1     | 3780  | 3050 | 120  | 12.83 | 58    | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 250     | 0.95     | -    | 1     | 3780  | 2600 | 140  | 11.30 | 58    | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 250     | 0.96     | -    | 1     | 3780  | 2600 | 140  | 10.04 | 56    | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 500     | 0.92     | -    | 1     | 3780  | 1354 | 260  | -     | 1995  | 40.0 | 7.69 | 30.0 | 30.8 |
| 25 | 500     | 0.95     | -    | 1     | 3780  | 1354 | 260  | -     | 1983  | 23.1 | 23.1 | 0.00 | 69.2 |
| 25 | 500     | 0.96     | -    | 1     | 3780  | 1250 | 260  | -     | 1569  | 23.1 | 14.3 | 0.00 | 42.9 |
| 25 | 750     | 0.92     | -    | 2     | 1160  | 456  | 80   | -     | 642   | 40.0 | 2.94 | 8.00 | 32.4 |
| 25 | 750     | 0.95     | -    | 5     | 1081  | 425  | 88   | -     | 1263  | 23.3 | 2.78 | 0.00 | 22.2 |
| 25 | 750     | 0.96     | -    | 4     | 1081  | 425  | 88   | -     | 1004  | 23.3 | 2.78 | 0.00 | 22.2 |
| 25 | 1000    | 0.92     | -    | 12    | 330   | 210  | 25   | -     | 1332  | 14.6 | 3.28 | 0.00 | 36.2 |
| 25 | 1000    | 0.95     | -    | 10    | 311   | 205  | 26   | -     | 1185  | 12.5 | 1.61 | 3.57 | 29.0 |
| 25 | 1000    | 0.96     | -    | 12    | 294   | 200  | 25   | -     | 951   | 12.3 | 1.59 | 5.26 | 47.6 |

Table: Computational results, time limit 300 seconds

|    | Instanc | es       |      | E     | BARON |      |      |      |       | B&B  |      |      | CH   |
|----|---------|----------|------|-------|-------|------|------|------|-------|------|------|------|------|
| #  | r       | $\alpha$ | time | nodes | gap   | pgap | dgap | time | nodes | gap  | pgap | dgap | pgap |
| 50 | 100     | 0.92     | -    | 1     | 6280  | 5133 | 40   | -    | 283   | 100  | 0.00 | 20.0 | 0.00 |
| 50 | 100     | 0.95     | -    | 1     | 6280  | 5133 | 40   | -    | 283   | 100  | 0.00 | 20.0 | 0.00 |
| 50 | 100     | 0.96     | -    | 1     | 6280  | 5133 | 40   | -    | 283   | 100  | 0.00 | 20.0 | 0.00 |
| 50 | 250     | 0.92     | -    | 1     | 780   | 550  | 80   | -    | 283   | 60.0 | 0.00 | 20.0 | 0.00 |
| 50 | 250     | 0.95     | -    | 1     | 6280  | 4386 | 80   | -    | 283   | 80.0 | 0.00 | 20.0 | 0.00 |
| 50 | 250     | 0.96     | -    | 1     | 6280  | 4386 | 80   | -    | 284   | 80.0 | 0.00 | 20.0 | 0.00 |
| 50 | 500     | 0.92     | -    | 1     | 6280  | 2143 | 140  | -    | 283   | 180  | 0.00 | 40.0 | 21.4 |
| 50 | 500     | 0.95     | -    | 1     | 6280  | 1993 | 160  | -    | 284   | 114  | 0.00 | 14.3 | 20.0 |
| 50 | 500     | 0.96     | -    | 1     | 6280  | 1993 | 160  | -    | 283   | 87.5 | 0.00 | 0.00 | 20.0 |
| 50 | 750     | 0.92     | -    | 1     | 6280  | 913  | 200  | -    | 292   | 230  | 6.45 | 0.00 | 3.20 |
| 50 | 750     | 0.95     | -    | 1     | 6280  | 772  | 260  | -    | 291   | 192  | 5.56 | 0.00 | 22.2 |
| 50 | 750     | 0.96     | -    | 1     | 6280  | 749  | 260  | -    | 290   | 185  | 0.00 | 0.00 | 18.9 |
| 50 | 1000    | 0.92     | -    | 1     | 6280  | 398  | 560  | -    | 283   | 220  | 1.59 | 40.0 | 11.1 |
| 50 | 1000    | 0.95     | -    | 1     | 6280  | 376  | 600  | -    | 280   | 156  | 4.55 | 11.1 | 28.8 |
| 50 | 1000    | 0.96     | -    | 1     | 6280  | 355  | 700  | -    | 280   | 154  | 2.90 | 25.0 | 31.9 |

Table: Computational results, time limit 300 seconds

|    | Instanc | es       |       | В     | ARON |      |      |        | E     | 3&B  |      |      | CH   |
|----|---------|----------|-------|-------|------|------|------|--------|-------|------|------|------|------|
| #  | r       | $\alpha$ | time  | nodes | gap  | pgap | dgap | time   | nodes | gap  | pgap | dgap | pgap |
| 10 | 100     | 0.92     | 5.13  | 1     | 0.00 | 0.00 | 0.00 | 0.59   | 20    | 0.00 | 0.00 | 0.00 | 0.00 |
| 10 | 100     | 0.95     | 3.12  | 1     | 0.00 | 0.00 | 0.00 | 0.58   | 20    | 0.00 | 0.00 | 0.00 | 0.00 |
| 10 | 100     | 0.96     | 3.48  | 1     | 0.00 | 0.00 | 0.00 | 0.67   | 20    | 0.00 | 0.00 | 0.00 | 0.00 |
| 10 | 250     | 0.92     | 4.69  | 1     | 0.00 | 0.00 | 0.00 | 0.44   | 20    | 0.00 | 0.00 | 0.00 | 0.00 |
| 10 | 250     | 0.95     | 75.22 | 1     | 0.00 | 0.00 | 0.00 | 0.73   | 20    | 0.00 | 0.00 | 0.00 | 0.00 |
| 10 | 250     | 0.96     | 31.12 | 1     | 0.00 | 0.00 | 0.00 | 0.46   | 20    | 0.00 | 0.00 | 0.00 | 71.4 |
| 10 | 500     | 0.92     | 82.39 | 84    | 0.00 | 0.00 | 0.00 | 193.7  | 12323 | 0.00 | 0.00 | 0.00 | 71.4 |
| 10 | 500     | 0.95     | 46.08 | 52    | 0.00 | 0.00 | 0.00 | 44.0   | 2717  | 0.00 | 0.00 | 0.00 | 40.0 |
| 10 | 500     | 0.96     | 383.4 | 1597  | 0.00 | 0.00 | 0.00 | 229.1  | 5130  | 0.00 | 0.00 | 0.00 | 46.7 |
| 10 | 750     | 0.92     | 269.2 | 1778  | 0.00 | 0.00 | 0.00 | 153.42 | 2402  | 0.00 | 0.00 | 0.00 | 29.4 |
| 10 | 750     | 0.95     | 439.0 | 911   | 0.00 | 0.00 | 0.00 | 208.5  | 6880  | 0.00 | 0.00 | 0.00 | 38.5 |
| 10 | 750     | 0.96     | 1456  | 2605  | 0.00 | 0.00 | 0.00 | 29.9   | 1026  | 0.00 | 0.00 | 0.00 | 50.0 |
| 10 | 1000    | 0.92     | 1.78  | 1     | 0.00 | 0.00 | 0.00 | 79.81  | 2913  | 0.00 | 0.00 | 0.00 | 26.9 |
| 10 | 1000    | 0.95     | 1.66  | 1     | 0.00 | 0.00 | 0.00 | 210.0  | 13754 | 0.00 | 0.00 | 0.00 | 36.4 |
| 10 | 1000    | 0.96     | 0.90  | 1     | 0.00 | 0.00 | 0.00 | 1.91   | 120   | 0.00 | 0.00 | 0.00 | 63.6 |

Table: Computational results, time limit 3000 seconds

|    | Instanc | es       |      | E     | BARON | 1    |      |       |       | B&B  |      |      | CH   |
|----|---------|----------|------|-------|-------|------|------|-------|-------|------|------|------|------|
| #  | r       | $\alpha$ | time | nodes | gap   | pgap | dgap | time  | nodes | gap  | pgap | dgap | pgap |
| 25 | 100     | 0.92     | -    | 71    | 100   | 0.00 | 100  | 121.6 | 164   | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 100     | 0.95     | -    | 94    | 80.0  | 0.00 | 80.0 | 98.5  | 130   | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 100     | 0.96     | -    | 109   | 80.0  | 0.00 | 80.0 | 57.6  | 84    | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 250     | 0.92     | -    | 107   | 80.0  | 0.00 | 80.0 | 12.8  | 58    | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 250     | 0.95     | -    | 21    | 100   | 0.00 | 100  | 11.3  | 58    | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 250     | 0.96     | -    | 18    | 100   | 0.00 | 100  | 10.0  | 56    | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 500     | 0.92     | -    | 29    | 3680  | 1354 | 160  | -     | 5300  | 27.3 | 7.69 | 18.2 | 30.8 |
| 25 | 500     | 0.95     | -    | 28    | 3050  | 1354 | 117  | -     | 7552  | 7.69 | 7.69 | 0.00 | 69.2 |
| 25 | 500     | 0.96     | -    | 39    | 3050  | 1250 | 117  | -     | 6404  | 23.1 | 14.3 | 0.00 | 42.9 |
| 25 | 750     | 0.92     | -    | 35    | 950   | 456  | 50.0 | -     | 4295  | 34.6 | 2.94 | 3.85 | 32.4 |
| 25 | 750     | 0.95     | -    | 52    | 845   | 425  | 50.0 | -     | 8314  | 23.3 | 2.78 | 0.00 | 22.2 |
| 25 | 750     | 0.96     | -    | 49    | 845   | 425  | 50.0 | -     | 4485  | 26.7 | 5.56 | 0.00 | 22.2 |
| 25 | 1000    | 0.92     | -    | 82    | 294   | 210  | 14.6 | -     | 12406 | 12.7 | 1.64 | 0.00 | 36.1 |
| 25 | 1000    | 0.95     | -    | 83    | 286   | 205  | 18.4 | -     | 11378 | 10.5 | 1.61 | 1.75 | 29.0 |
| 25 | 1000    | 0.96     | -    | 104   | 49.0  | 20.6 | 17.7 | -     | 10330 | 6.67 | 1.59 | 0.00 | 47.6 |

Table: Computational results, time limit 3000 seconds

|    | Instanc | es       |      | E     | BARON |      |      |      |       | B&B  |      |      | CH   |
|----|---------|----------|------|-------|-------|------|------|------|-------|------|------|------|------|
| #  | r       | $\alpha$ | time | nodes | gap   | pgap | dgap | time | nodes | gap  | pgap | dgap | pgap |
| 50 | 100     | 0.92     | -    | 11    | 100   | 0.00 | 20   | -    | 2805  | 80.0 | 0.00 | 0.00 | 0.00 |
| 50 | 100     | 0.95     | -    | 1     | 6280  | 5133 | 40   | -    | 2804  | 80.0 | 0.00 | 0.00 | 0.00 |
| 50 | 100     | 0.96     | -    | 1     | 6280  | 5133 | 40   | -    | 2803  | 80.0 | 0.00 | 0.00 | 0.00 |
| 50 | 250     | 0.92     | -    | 1     | 80.0  | 0.00 | 40   | -    | 2795  | 40.0 | 0.00 | 0.00 | 0.00 |
| 50 | 250     | 0.95     | -    | 1     | 100   | 0.00 | 40   | -    | 2796  | 60.0 | 0.00 | 0.00 | 0.00 |
| 50 | 250     | 0.96     | -    | 1     | 100   | 0.00 | 40   | -    | 2794  | 60.0 | 0.00 | 0.00 | 0.00 |
| 50 | 500     | 0.92     | -    | 1     | 6280  | 2143 | 140  | -    | 2773  | 100  | 0.00 | 0.00 | 21.4 |
| 50 | 500     | 0.95     | -    | 1     | 6280  | 1993 | 160  | -    | 2779  | 87.5 | 0.00 | 0.00 | 20.0 |
| 50 | 500     | 0.96     | -    | 1     | 6280  | 1993 | 160  | -    | 2763  | 87.5 | 0.00 | 0.00 | 20.0 |
| 50 | 750     | 0.92     | -    | 8     | 3040  | 913  | 0.00 | -    | 2947  | 230  | 6.45 | 0.00 | 3.20 |
| 50 | 750     | 0.95     | -    | 10    | 3040  | 773  | 30.0 | -    | 2942  | 177  | 0.00 | 0.00 | 22.2 |
| 50 | 750     | 0.96     | -    | 8     | 3040  | 749  | 30.0 | -    | 2955  | 185  | 0.00 | 0.00 | 18.9 |
| 50 | 1000    | 0.92     | -    | 20    | 1470  | 398  | 40.0 | -    | 2825  | 125  | 0.00 | 0.00 | 11.1 |
| 50 | 1000    | 0.95     | -    | 13    | 1395  | 376  | 42.9 | -    | 2880  | 127  | 3.03 | 0.00 | 28.8 |
| 50 | 1000    | 0.96     | -    | 14    | 1327  | 355  | 59.1 | -    | 2784  | 97.1 | 0.00 | 0.00 | 31.9 |

Table: Computational results, time limit 3000 seconds

| Introduction | System Model | MINLP | Lagrangian Relaxation | Solution method | Experiments |
|--------------|--------------|-------|-----------------------|-----------------|-------------|
|              |              |       |                       |                 | 0000000     |

# Thank you!