
A Distributed Algorithm for Spectral Sparsification of
Graphs with Applications to Data Clustering

Fabricio Mendoza-Granada, Marcos Villagra

Facultad Politécnica
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Graph Laplacian

We will work with two fundamental definitions from Spectral Graph Theory

Definition 1

Given an undirected weighted graph G = (V ,E ,w) where w : E → R≥0

the Laplacian matrix is defined as

LG = DG − AG .

where DG is the weighted degree matrix and AG is the weighted adjacency
matrix.
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Spectral Sparsification Problem

Given an input graph G , an spectral sparsifier of G is a subgraph H with
two major characteristics:

1 H has fewer edges than G

2 The spectra of G and H are close up to a constant factor

The spectra of a graph G is the set of eigenvalues of LG .
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Spectral Sparsification Definition

Definition 2

Let H = (V ,E , w̃) be a subgraph of G . We say that H is an ε-spectral
sparsifier of G if

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx . (1)
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Problem Resolution Approach

First, we will present a structure that captures the idea of repeated
elements along a family of subsets. The set theoretic structure is
composed of three parts which are

I Occurrence Number
I Overlapping Cardinality
I Overlapping Cardinality Partition

Second, we will use the overlapping cardinality partition for
decomposing the sum of Laplacians of a family of subgraphs.

Finally, we will show that the union of spectral sparsifiers of those
subgraphs is an spectral sparsifier of their union.
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Occurrence number

Definition 3

Let {A1, . . . ,At} be a family of subsets of A. For any a ∈ A, the
occurrence number of a in {Ai}i≤t , denoted #(a), is the maximum
number of sets from {Ai}i≤t in which a appears.

Example 4

Consider the following family of subsets

{{1, 4, 5}, {1, 2, 3, 5, 6, 7, 8}, {3, 7, 8, 9}, {4, 5, 6, 10}, {7, 8, 9, 11}}.
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Occurrence Number

A1 A2 A3

A4 A5

1 2 3

4
5
6 7

8
9

10 11

Here we have that #(1) = 2, #(2) = 1, #(3) = 2, and so on.
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Overlapping Cardinality Definition

Definition 5

Let {A1, . . . ,At} be a family of subsets of A =
⋃t

i=1 Ai . The overlapping
cardinality of a subset A′ ⊆ A in {Ai}i≤t is a positive integer c such that
for each a ∈ A′ its occurrence number #(a) = c ; otherwise the
overlapping cardinality of A′ in {Ai}i≤t is 0.

Observation 1

The overlapping cardinality of a given subset of A is a positive value c if
and only if all its elements has the same occurrence number c
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Overlapping Cardinality
A1 A2 A3

A4 A5

1 2 3

4
5
6 7

8
9

10 11

Example 6

Take the subset {5, 8}, its overlapping cardinality is 3 because
#5 = #8 = 3.

Example 7

Now, take {1, 2, 3}, its overlapping cardinality is 0 because #1 = #3 = 2
but #2 = 1.
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Overlapping Cardinality Partition

Definition 8

It is a way to partition a set A respect to the number of times each
element a ∈ A appears in a family {Ai}i≤t where t ∈ N and Ai ⊆ A.

Example 9

Let’s take again the family

{{1, 4, 5}, {1, 2, 3, 5, 6, 7, 8}, {3, 7, 8, 9}, {4, 5, 6, 10}, {7, 8, 9, 11}}.

An overlapping cardinality partition is

{{2, 10, 11}, {1, 3, 4, 6, 7, 9}, {5, 8}}.
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Overlapping Cardinality Partition

A1 A2 A3

A4 A5

1 2 3

4
5
6 7

8
9

10 11

{2, 10, 11} has overlapping cardinality equals to 1 because
#2 = #10 = #11 = 1.

{1, 3, 4, 6, 7, 9} has overlapping cardinality equals to 2 because
#1 = #3 = #4 = #6 = #7 = #9 = 2.

{5, 8} has overlapping cardinality equals to 3 because #5 = #8 = 3.
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Laplacian Decomposition

Suppose a complete graph G of 4 vertices and consider four different
subgraphs of it.

We will consider the union of graphs as a sum of Laplacians for technical
reasons.
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Laplacian Decomposition

Now, applying Definition 1 in every subgraph and adding them up we get
LG1 + LG2 + LG3 + LG4 equals




d11 −w12 −w13 0

−w12 d12 −w23 −w24

−w13 −w23 d13 0

0 −w24 0 d14




+




d21 −w12 0 −w14

−w12 d22 0 −w24

0 0 d23 0

−w14 −w24 0 d24




+




d31 −w12 0 0

−w12 d32 −w23 −w24

0 −w23 d33 0

0 −w24 0 d34




+




d41 0 −w13 0

0 d42 −w23 0

−w13 −w23 d43 −w34

0 0 −w34 d44




where the supraindex i in dv indicate the corresponding subgraph.
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Sum of Laplacians

So we can express the sum of Laplacians as




d1
′

1 −3w12 0 0

−3w12 d1
′

2 −3w23 −3w24

0 −3w23 d1
′

3 0

0 −3w24 0 d1
′

4




+




d2
′

1 0 −2w13 0

0 d2
′

2 0 0

−2w13 0 d2
′

3 0

0 0 0 d2
′

4




+




d3
′

1 0 0 −w14

0 d3
′

2 0 0

0 0 d3
′

3 −w34

−w14 0 −w34 d3
′

4




= 3LG′
1
+ 2LG′

2
+ LG′

3
.

Where the coefficients are the overlapping cardinalities of each subset of
edges.
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Laplacian Decomposition Theorem

The generalization of the last example can be summarized in the following
result

Theorem

If 1 ≤ c1 < c2 < · · · < ck are the overlapping cardinalities over the family
E = {Ei}i≤t with an overlapping cardinality partition {E ′cj}j≤k , then
∑t

i=1 LGi
=

∑k
j=1 cjLG ′

cj
where LG ′

cj
is the Laplacian of G ′cj = (V ,E ′cj ,w

′
cj

).

The sum of Laplacians of subgraphs equals to the sum of Laplacians of
subgraphs induced by the overlapping cardinality partition times the
overlapping cardinality of its associated set
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Union of Spectral Sparsifiers

Theorem

Let (1 = c1 < c2 < · · · < ck) be the overlapping cardinalities over the
family E = {Ei}i≤t with {E ′cj}j≤k its associated overlapping cardinality
partition and LG1 , . . . , LGt the Laplacians of G1, . . . ,Gt . If Hi = (V ,Di , hi )
is an ε-spectral sparsifier of Gi , then H = (V ,

⋃t
i Di , h) is an ε′-spectral

sparsifier of G where h(e) =
∑t

i hi (e)
c1ck

and ε′ ≥ 1− 1−ε
ck

.
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Union of Spectral Sparsifiers
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Outline of the proof

First, for pair of graphs Gi and Hi , by definition of Spectral Sparsifier it
holds

(1− ε)xTLGi
x ≤ xTLHi

x ≤ (1 + ε)xTLGi
x . (2)

Then, taking the sum over all sparsifier we get

(1− ε)
t∑

i=1

xTLGi
x ≤

t∑

i=1

xTLHi
x ≤ (1 + ε)

t∑

i=1

xTLGi
x . (3)

Here is where we simulate the union of graphs by the sum of Laplacians.
Now, applying Laplacian Decomposition theorem on the left and right
terms of the last inequality we may conclude that

(1− ε)
t∑

i=1

xTLGi
x ≥ (1− ε)c1x

TLGx and (4)

(1 + ε)
t∑

i=1

xTLGi
x ≤ (1 + ε)ckx

TLGx (5)
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Outline of the proof (cont’d)

Then, the resultant inequality is

(1− ε)c1x
TLGx ≤

t∑

i=1

xTLHi
x ≤ (1 + ε)ckx

TLGx , (6)

and multiplying it by 1
c1ck

we get

(1− ε)x
TLGx

ck
≤ xTLHx ≤ (1 + ε)

xTLGx

c1
(7)

Finally, taking an

ε′ ≥ 1− 1− ε
ck

(8)

we get an inequality in the form of Definition 2.
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Clustering Problem

Clustering seeks to find a partition on a subset of points X ⊂ Rd

Fabricio Mendoza-Granada, Marcos Villagra Distributed Spectral Sparsification September 16, 2020 26 / 36



Graph Clustering

Graph Clustering solves the Clustering problem by transforming the set X
into a similarity graph and seeks for a minimum cut

It is known that the eigenvectors of the first k eigenvalues of LG taking in
nondecreasing order are used to approximate a minimum multicut in G 1.

1James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. “Multiway Spectral
Partitioning and higher-order cheeger inequalities.”. In: Journal of the ACM (JACM)
61.6 (2014), p. 37.
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Communication Complexity
There are s sites which want to compute a function
f : X1 × X2 × . . .Xs → Z where Xi is the input of site Pi .
Each site sends bits to the others so that they can compute the function
f , the way in which the bits are sent defined a so called communication
protocol.

Blackboard
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Number-On-Forehead Model (NOF)

The site Pi has access to the input (x1, . . . , xi−1, xi+1, . . . , xs).

Site Pi
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∆-Systems

A Sunflower or ∆-System is a family of sets F = {A1, ...,At} where
(Ai ∩ Aj) =

⋂t
k Ak for all i 6= j .

If the members of F are of size ` and |Ai ∩ Aj | = λ for all i 6= j the F
is a Weak ∆-System.

A

It is known that if F is a weak ∆-System and |F | ≥ `2 − `+ 2, then F is a
Sunflower2.

2Michel Deza. “Solution d’un problème de Erdös-Lovász”. In: Journal of
Combinatorial Theory, Series B 16.2 (1974), pp. 166–167.
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∆-Systems

Ai

A

∆i

⇒ A =
⋂t

i=1Ai is the Kernel

⇒ ∆i =
⋃t

j 6=i(Aj −A) is the
Generalized Symmetric Difference

⇒ δi = |A|
|
⋃t

j 6=i
Aj |

is the

Overlapping Coefficient

⇒ δ = maxi{δi} is the
maximum overlapping coefficient

Fabricio Mendoza-Granada, Marcos Villagra Distributed Spectral Sparsification September 16, 2020 32 / 36



Clustering in NOF

Blackboard

P1

P2

P3

P4

· · ·Pj

. . .

Ps

holds δ

E1

E2

E3

E4

Es

Gj = (V ,∆j)Hj = (V , ∆̂j)

Hj

Ej

H ′i = (V , Êj)

H ′i∪ = H
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Communication Cost

Finally, the communication cost of our protocol is

O(log(
n

ε2

√
1− δ)),

where n is the number of vertices, ε is the spectral approximation factor
and δ is the maximum overlapping coefficient.
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Summary

We showed that the union of spectral sparsifiers of subgraphs of a
given graph G is a spectral sparsifier of the graph G as well.

We gave an exact computation of the spectral approximation factor ε′

for the union of spectral sparsifiers.

We gave an application of the union of Spectral Sparsifier for
computing Clustering in a distributed problem with overlapping data.
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Thank you for your attention!
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