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Problem Definition

– u-NFI

Input

Directed graph G = (V ,E ) and two nodes s 6= t in G

Budget B ∈ N>0

Arc capacities c : E → {1, u}, where u ∈ Q>1

Task

Find a removal strategy R ⊆ E of arcs with |R| ≤ B such that the value val(R) of
a maximum s-t-flow in the graph GR := (V ,E \ R) is minimized.

B = 2

val(R) = 1

s t

1 1

u
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Notation

A cut or s-t-cut is a partition V = S∪̇T of the nodes of G such that s ∈ S
and t ∈ T .

An arc r ∈ E is in a cut C = (S ,T ) if α(r) ∈ S and ω(r) ∈ T .

Arcs having capacity u are called large arcs.

Arcs having capacity 1 are called small arcs.

q(C ) := #(large arcs in C )

p(C ) := #(small arcs in C )

s t

1 1

u u

u

Cut C

u

u

1

u

u

u

1 1

q(C) = 2

u

u

p(C) = 1

1
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Removal Strategies and Cuts – Part 1

Lemma 1

For a solution R ⊆ E , either all arcs in R are in one cut, or val(R) can be reduced
by a simple exchange argument.
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u
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u u

u
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Removal Strategies and Cuts – Part 2

s t

1 1

u u

u

u

u

Observation 1

Let C be a cut in G and let R(C ) be the set of the B largest arcs in C . If C is a
minimum cut in GR(C), then R(C ) is a best removal strategy amongst all
strategies removing only arcs from C .

In the following, write val(C ) instead of val(R(C )).
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Attacking a Minimum Cut

Lemma 2
Let Cm denote a minimum cut in G . Then Cm is optimal if it contains at least
B large arcs.

Proof

val(Cm) = capacity of arcs in the cut − capacity of removed arcs

Can assume in the following that any minimum
cut in G contains at most B − 1 large arcs
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Attacking a Least Cut

Lemma 3
Let Cl denote a least cut in G , i.e., a cut with least possible number of arcs. Then
Cl is optimal if it contains at most B large arcs.

Proof
After removal, Cl will have

the least possible number of remaining arcs and

all of those remaining arcs will be small arcs (least possible capacity)

Can assume in the following that any least
cut in G contains at least B + 1 large arcs
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Modifying the Graph

What we already discussed

Where we proceed

s t

1 1

u u

u

s t

1 1

1 1

1

s t

1 1

γ γ

γ

1 ≤ γ ≤ u

Call this graph G (γ) and denote the
capacity of a cut C in G (γ) by capγ(C ).

But how do we choose γ?
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The Bisection Method

γ

capγ(C )

Cl

slope: q(Cl)

p(Cl)

Cm

slope: q(Cm)

p(Cm)

1 uγ̂

Ĉ
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Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 11 / 16



The Bisection Method

γ

capγ(C )

Cl

slope: q(Cl)

p(Cl)

Cm

slope: q(Cm)

p(Cm)

1 uγ̂

Ĉ
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Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 11 / 16



The Bisection Method

γ

capγ(C )

Cl

slope: q(Cl)

p(Cl)

Cm

slope: q(Cm)

p(Cm)

1 uγ̂

Ĉ
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The Algorithm
1 bisection (C1,C2)

2 Compute γ̂ and Ĉ

3 if q(Ĉ ) /∈ {q(C1), q(C2)} then
4 return bisection(C1, Ĉ ) ∪ bisection(Ĉ ,C2)
5 else
6 return {C1,C2}
7 end

Theorem 1

There is at least one cut C in the set returned by bisection(Cl ,Cm) such that the
solution R(C ) is a (B + 1)-approximate solution for u-NFI on G .
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Properties of New Cuts

Lemma 4

If the bisection method finds a new cut Ĉ by calling bisection(C1,C2), then
q(C1) > q(Ĉ ) > q(C2).

Proof

γ

capγ(C )
C1

C2

γ1 γ2γ̂

Ĉ

 

Ĉ 
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q(C1) > q(Ĉ ) > q(C2).
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Polynomial Running Time

Lemma 4

If the bisection method finds a new cut Ĉ by calling bisection(C1,C2), then
q(C1) > q(Ĉ ) > q(C2).

For each k ∈ {0, . . . ,m}, the algorithm computes at most three cuts with
exactly k large arcs.

The algorithm has at most 3(m + 1) recursion steps.

Theorem 2

The algorithm bisection(Cl ,Cm) runs in polynomial time.
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Almost-Tightness of Approximation Ratio

s v1 v2 t

1

1

(B + 1)2 times

u

B times

u

1

B + 1 times

1

u

u

B + 1 times

u >> B

Cm

val(Cm) = (B + 1)2 − B

COPT

val(COPT ) = B + 1

Cl

val(Cl) = (B + 1)2

Observation 2
The algorithm is not a B-approximation algorithm for u-NFI as
val(Cm) = B2 + B + 1 > B2 + B = B · val(COPT ).
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Things I want you to say

After this presentation, I know ...

... that the crucial part of u-NFI is to find the right cut.

... how to find good candidates for the right cut.

... how to be a great president.

JAN BOECKMANN, M.Sc.

Am Essigberg 3

94315 Straubing

jan.boeckmann@tum.de
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