
An Approximation Algorithm
for Network Flow Interdiction

with Unit Costs and Two Capacities

Jan Boeckmann and Clemens Thielen

TUM Campus Straubing for Biotechnology and Sustainability
Technical University of Munich

16th September 2020

Grant number: 67DAS156C

Supported by:

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 1 / 16

Motivation

s t

San Startos Terminal TX

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 2 / 16

Motivation

s t

San Startos Terminal TX

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 2 / 16

Motivation

s t

San Startos Terminal TX

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 2 / 16

Motivation

s t

San Startos Terminal TX

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 2 / 16

Motivation

s t

San Startos Terminal TX

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 2 / 16

Motivation

s t

San Startos Terminal TX

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 2 / 16

Problem Definition

– u-NFI

Input

Directed graph G = (V ,E) and two nodes s 6= t in G

Budget B ∈ N>0

Arc capacities c : E → {1, u}, where u ∈ Q>1

Task

Find a removal strategy R ⊆ E of arcs with |R| ≤ B such that the value val(R) of
a maximum s-t-flow in the graph GR := (V ,E \ R) is minimized.

B = 2

val(R) = 1

s t

1 1

u

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 3 / 16

Problem Definition – u-NFI

Input

Directed graph G = (V ,E) and two nodes s 6= t in G

Budget B ∈ N>0

Arc capacities c : E → {1, u}, where u ∈ Q>1

Task

Find a removal strategy R ⊆ E of arcs with |R| ≤ B such that the value val(R) of
a maximum s-t-flow in the graph GR := (V ,E \ R) is minimized.

B = 2

val(R) = 1

s t

1 1

u

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 3 / 16

Problem Definition – u-NFI

Input

Directed graph G = (V ,E) and two nodes s 6= t in G

Budget B ∈ N>0

Arc capacities c : E → {1, u}, where u ∈ Q>1

Task

Find a removal strategy R ⊆ E of arcs with |R| ≤ B such that the value val(R) of
a maximum s-t-flow in the graph GR := (V ,E \ R) is minimized.

B = 2

val(R) = 1

s t

1 1

u

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 3 / 16

Problem Definition – u-NFI

Input

Directed graph G = (V ,E) and two nodes s 6= t in G

Budget B ∈ N>0

Arc capacities c : E → {1, u}, where u ∈ Q>1

Task

Find a removal strategy R ⊆ E of arcs with |R| ≤ B such that the value val(R) of
a maximum s-t-flow in the graph GR := (V ,E \ R) is minimized.

B = 2

val(R) = 1

s t

1 1

u u

u

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 3 / 16

Problem Definition – u-NFI

Input

Directed graph G = (V ,E) and two nodes s 6= t in G

Budget B ∈ N>0

Arc capacities c : E → {1, u}, where u ∈ Q>1

Task

Find a removal strategy R ⊆ E of arcs with |R| ≤ B such that the value val(R) of
a maximum s-t-flow in the graph GR := (V ,E \ R) is minimized.

B = 2

val(R) = 1

s t

1 1

u u

u

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 3 / 16

Problem Definition – u-NFI

Input

Directed graph G = (V ,E) and two nodes s 6= t in G

Budget B ∈ N>0

Arc capacities c : E → {1, u}, where u ∈ Q>1

Task

Find a removal strategy R ⊆ E of arcs with |R| ≤ B such that the value val(R) of
a maximum s-t-flow in the graph GR := (V ,E \ R) is minimized.

B = 2 val(R) = 1

s t

1 1

u

1 1

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 3 / 16

Previous Work
For General Version of NFI with Arbitrary Capacities and Removal Costs

1964 1993 2003 2017 2020

Wollmer
First reference in a
non-mathematical
context

Phillips

First mathematical
formulation

NP-hardness
Algorithm for
planar graphs

Wood

NP-hardness

Burch et al.

Pseudoapproximation
algorithm

Chestnut and Zenklusen

2(n − 1)-approximation
algorithm for general version
of NFI

(n − 1)-approximation
algorithm for u-NFI

Hardness of approximation

B. and Thielen

(B + 1)-
approximation
algorithm for u-NFI

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 4 / 16

Previous Work
For General Version of NFI with Arbitrary Capacities and Removal Costs

1964 1993 2003 2017 2020

Wollmer
First reference in a
non-mathematical
context

Phillips

First mathematical
formulation

NP-hardness
Algorithm for
planar graphs

Wood

NP-hardness

Burch et al.

Pseudoapproximation
algorithm

Chestnut and Zenklusen

2(n − 1)-approximation
algorithm for general version
of NFI

(n − 1)-approximation
algorithm for u-NFI

Hardness of approximation

B. and Thielen

(B + 1)-
approximation
algorithm for u-NFI

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 4 / 16

Previous Work
For General Version of NFI with Arbitrary Capacities and Removal Costs

1964 1993 2003 2017 2020

Wollmer
First reference in a
non-mathematical
context

Phillips

First mathematical
formulation

NP-hardness
Algorithm for
planar graphs

Wood

NP-hardness

Burch et al.

Pseudoapproximation
algorithm

Chestnut and Zenklusen

2(n − 1)-approximation
algorithm for general version
of NFI

(n − 1)-approximation
algorithm for u-NFI

Hardness of approximation

B. and Thielen

(B + 1)-
approximation
algorithm for u-NFI

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 4 / 16

Previous Work
For General Version of NFI with Arbitrary Capacities and Removal Costs

1964 1993 2003 2017 2020

Wollmer
First reference in a
non-mathematical
context

Phillips

First mathematical
formulation

NP-hardness
Algorithm for
planar graphs

Wood

NP-hardness

Burch et al.

Pseudoapproximation
algorithm

Chestnut and Zenklusen

2(n − 1)-approximation
algorithm for general version
of NFI

(n − 1)-approximation
algorithm for u-NFI

Hardness of approximation

B. and Thielen

(B + 1)-
approximation
algorithm for u-NFI

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 4 / 16

Previous Work
For General Version of NFI with Arbitrary Capacities and Removal Costs

1964 1993 2003 2017 2020

Wollmer
First reference in a
non-mathematical
context

Phillips

First mathematical
formulation

NP-hardness
Algorithm for
planar graphs

Wood

NP-hardness

Burch et al.

Pseudoapproximation
algorithm

Chestnut and Zenklusen

2(n − 1)-approximation
algorithm for general version
of NFI

(n − 1)-approximation
algorithm for u-NFI

Hardness of approximation

B. and Thielen

(B + 1)-
approximation
algorithm for u-NFI

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 4 / 16

Notation

A cut or s-t-cut is a partition V = S∪̇T of the nodes of G such that s ∈ S
and t ∈ T .

An arc r ∈ E is in a cut C = (S ,T) if α(r) ∈ S and ω(r) ∈ T .

Arcs having capacity u are called large arcs.

Arcs having capacity 1 are called small arcs.

q(C) := #(large arcs in C)

p(C) := #(small arcs in C)

s t

1 1

u u

u

Cut C

u

u

1

u

u

u

1 1

q(C) = 2

u

u

p(C) = 1

1

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 5 / 16

Notation

A cut or s-t-cut is a partition V = S∪̇T of the nodes of G such that s ∈ S
and t ∈ T .

An arc r ∈ E is in a cut C = (S ,T) if α(r) ∈ S and ω(r) ∈ T .

Arcs having capacity u are called large arcs.

Arcs having capacity 1 are called small arcs.

q(C) := #(large arcs in C)

p(C) := #(small arcs in C)

s t

1 1

u u

u

Cut C

u

u

1

u

u

u

1 1

q(C) = 2

u

u

p(C) = 1

1

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 5 / 16

Notation

A cut or s-t-cut is a partition V = S∪̇T of the nodes of G such that s ∈ S
and t ∈ T .

An arc r ∈ E is in a cut C = (S ,T) if α(r) ∈ S and ω(r) ∈ T .

Arcs having capacity u are called large arcs.

Arcs having capacity 1 are called small arcs.

q(C) := #(large arcs in C)

p(C) := #(small arcs in C)

s t

1 1

u u

u

Cut C

u

u

1

u

u

u

1 1

q(C) = 2

u

u

p(C) = 1

1

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 5 / 16

Notation

A cut or s-t-cut is a partition V = S∪̇T of the nodes of G such that s ∈ S
and t ∈ T .

An arc r ∈ E is in a cut C = (S ,T) if α(r) ∈ S and ω(r) ∈ T .

Arcs having capacity u are called large arcs.

Arcs having capacity 1 are called small arcs.

q(C) := #(large arcs in C)

p(C) := #(small arcs in C)

s t

1 1

u u

u

Cut C

u

u

1

u

u

u

1 1

q(C) = 2

u

u

p(C) = 1

1

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 5 / 16

Notation

A cut or s-t-cut is a partition V = S∪̇T of the nodes of G such that s ∈ S
and t ∈ T .

An arc r ∈ E is in a cut C = (S ,T) if α(r) ∈ S and ω(r) ∈ T .

Arcs having capacity u are called large arcs.

Arcs having capacity 1 are called small arcs.

q(C) := #(large arcs in C)

p(C) := #(small arcs in C)

s t

1 1

u u

u

Cut C

u

u

1

u

u

u

1 1

q(C) = 2

u

u

p(C) = 1

1

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 5 / 16

Notation

A cut or s-t-cut is a partition V = S∪̇T of the nodes of G such that s ∈ S
and t ∈ T .

An arc r ∈ E is in a cut C = (S ,T) if α(r) ∈ S and ω(r) ∈ T .

Arcs having capacity u are called large arcs.

Arcs having capacity 1 are called small arcs.

q(C) := #(large arcs in C)

p(C) := #(small arcs in C)

s t

1 1

u u

u

Cut C

u

u

1

u

u

u

1 1

q(C) = 2

u

u

p(C) = 1

1

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 5 / 16

Notation

A cut or s-t-cut is a partition V = S∪̇T of the nodes of G such that s ∈ S
and t ∈ T .

An arc r ∈ E is in a cut C = (S ,T) if α(r) ∈ S and ω(r) ∈ T .

Arcs having capacity u are called large arcs.

Arcs having capacity 1 are called small arcs.

q(C) := #(large arcs in C)

p(C) := #(small arcs in C)

s t

1 1

u u

u

Cut C

u

u

1

u

u

u

1 1

q(C) = 2

u

u

p(C) = 1

1

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 5 / 16

Removal Strategies and Cuts – Part 1

Lemma 1

For a solution R ⊆ E , either all arcs in R are in one cut, or val(R) can be reduced
by a simple exchange argument.

s t

1 1

u u

u

1 1

u u

u

1 1

u

1 1

u

1 1

u

u u

1 1

u

u u

1 1

u

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 6 / 16

Removal Strategies and Cuts – Part 1

Lemma 1

For a solution R ⊆ E , either all arcs in R are in one cut, or val(R) can be reduced
by a simple exchange argument.

s t

1 1

u u

u

1 1

u u

u

1 1

u

1 1

u

1 1

u

u u

1 1

u

u u

1 1

u

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 6 / 16

Removal Strategies and Cuts – Part 1

Lemma 1

For a solution R ⊆ E , either all arcs in R are in one cut, or val(R) can be reduced
by a simple exchange argument.

s t

1 1

u u

u

1 1

u u

u

1 1

u

1 1

u

1 1

u

u u

1 1

u

u u

1 1

u

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 6 / 16

Removal Strategies and Cuts – Part 1

Lemma 1

For a solution R ⊆ E , either all arcs in R are in one cut, or val(R) can be reduced
by a simple exchange argument.

s t

1 1

u u

u

1 1

u u

u

1 1

u

1 1

u

1 1

u

u u

1 1

u

u u

1 1

u

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 6 / 16

Removal Strategies and Cuts – Part 1

Lemma 1

For a solution R ⊆ E , either all arcs in R are in one cut, or val(R) can be reduced
by a simple exchange argument.

s t

1 1

u u

u

1 1

u u

u

1 1

u

1 1

u

1 1

u

u u

1 1

u

u u

1 1

u

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 6 / 16

Removal Strategies and Cuts – Part 1

Lemma 1

For a solution R ⊆ E , either all arcs in R are in one cut, or val(R) can be reduced
by a simple exchange argument.

s t

1 1

u u

u

1 1

u u

u

1 1

u

1 1

u

1 1

u

u u

1 1

u

u u

1 1

u

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 6 / 16

Removal Strategies and Cuts – Part 1

Lemma 1

For a solution R ⊆ E , either all arcs in R are in one cut, or val(R) can be reduced
by a simple exchange argument.

s t

1 1

u u

u

1 1

u u

u

1 1

u

1 1

u

1 1

u

u u

1 1

u

u u

1 1

u

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 6 / 16

Removal Strategies and Cuts – Part 1

Lemma 1

For a solution R ⊆ E , either all arcs in R are in one cut, or val(R) can be reduced
by a simple exchange argument.

s t

1 1

u u

u

1 1

u u

u

1 1

u

1 1

u

1 1

u

u u

1 1

u

u u

1 1

u

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 6 / 16

Removal Strategies and Cuts – Part 1

Lemma 1

For a solution R ⊆ E , either all arcs in R are in one cut, or val(R) can be reduced
by a simple exchange argument.

s t

1 1

u u

u

1 1

u u

u

1 1

u

1 1

u

1 1

u

u u

1 1

u

u u

1 1

u

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 6 / 16

Removal Strategies and Cuts – Part 2

s t

1 1

u u

u

u

u

Observation 1

Let C be a cut in G and let R(C) be the set of the B largest arcs in C . If C is a
minimum cut in GR(C), then R(C) is a best removal strategy amongst all
strategies removing only arcs from C .

In the following, write val(C) instead of val(R(C)).

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 7 / 16

Removal Strategies and Cuts – Part 2

s t

1 1

u u

u

u

u

Observation 1

Let C be a cut in G and let R(C) be the set of the B largest arcs in C . If C is a
minimum cut in GR(C), then R(C) is a best removal strategy amongst all
strategies removing only arcs from C .

In the following, write val(C) instead of val(R(C)).

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 7 / 16

Removal Strategies and Cuts – Part 2

s t

1 1

u u

u

u

u

Observation 1

Let C be a cut in G and let R(C) be the set of the B largest arcs in C . If C is a
minimum cut in GR(C), then R(C) is a best removal strategy amongst all
strategies removing only arcs from C .

In the following, write val(C) instead of val(R(C)).

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 7 / 16

Removal Strategies and Cuts – Part 2

s t

1 1

u u

u

u

u

Observation 1

Let C be a cut in G and let R(C) be the set of the B largest arcs in C . If C is a
minimum cut in GR(C), then R(C) is a best removal strategy amongst all
strategies removing only arcs from C .

In the following, write val(C) instead of val(R(C)).

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 7 / 16

Removal Strategies and Cuts – Part 2

s t

1 1

u u

u

u

u

Observation 1

Let C be a cut in G and let R(C) be the set of the B largest arcs in C . If C is a
minimum cut in GR(C), then R(C) is a best removal strategy amongst all
strategies removing only arcs from C .

In the following, write val(C) instead of val(R(C)).

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 7 / 16

Attacking a Minimum Cut

Lemma 2
Let Cm denote a minimum cut in G . Then Cm is optimal if it contains at least
B large arcs.

Proof

val(Cm) = capacity of arcs in the cut − capacity of removed arcs

Can assume in the following that any minimum
cut in G contains at most B − 1 large arcs

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 8 / 16

Attacking a Minimum Cut

Lemma 2
Let Cm denote a minimum cut in G . Then Cm is optimal if it contains at least
B large arcs.

Proof

val(Cm) = capacity of arcs in the cut − capacity of removed arcs

Can assume in the following that any minimum
cut in G contains at most B − 1 large arcs

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 8 / 16

Attacking a Minimum Cut

Lemma 2
Let Cm denote a minimum cut in G . Then Cm is optimal if it contains at least
B large arcs.

Proof

val(Cm) = capacity of arcs in the cut − capacity of removed arcs

Can assume in the following that any minimum
cut in G contains at most B − 1 large arcs

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 8 / 16

Attacking a Minimum Cut

Lemma 2
Let Cm denote a minimum cut in G . Then Cm is optimal if it contains at least
B large arcs.

Proof

val(Cm) = capacity of arcs in the cut − capacity of removed arcs

Can assume in the following that any minimum
cut in G contains at most B − 1 large arcs

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 8 / 16

Attacking a Minimum Cut

Lemma 2
Let Cm denote a minimum cut in G . Then Cm is optimal if it contains at least
B large arcs.

Proof

val(Cm) = capacity of arcs in the cut − capacity of removed arcs

Can assume in the following that any minimum
cut in G contains at most B − 1 large arcs

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 8 / 16

Attacking a Minimum Cut

Lemma 2
Let Cm denote a minimum cut in G . Then Cm is optimal if it contains at least
B large arcs.

Proof

val(Cm) = capacity of arcs in the cut − capacity of removed arcs

Can assume in the following that any minimum
cut in G contains at most B − 1 large arcs

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 8 / 16

Attacking a Least Cut

Lemma 3
Let Cl denote a least cut in G , i.e., a cut with least possible number of arcs. Then
Cl is optimal if it contains at most B large arcs.

Proof
After removal, Cl will have

the least possible number of remaining arcs and

all of those remaining arcs will be small arcs (least possible capacity)

Can assume in the following that any least
cut in G contains at least B + 1 large arcs

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 9 / 16

Attacking a Least Cut

Lemma 3
Let Cl denote a least cut in G , i.e., a cut with least possible number of arcs. Then
Cl is optimal if it contains at most B large arcs.

Proof
After removal, Cl will have

the least possible number of remaining arcs and

all of those remaining arcs will be small arcs (least possible capacity)

Can assume in the following that any least
cut in G contains at least B + 1 large arcs

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 9 / 16

Attacking a Least Cut

Lemma 3
Let Cl denote a least cut in G , i.e., a cut with least possible number of arcs. Then
Cl is optimal if it contains at most B large arcs.

Proof
After removal, Cl will have

the least possible number of remaining arcs and

all of those remaining arcs will be small arcs (least possible capacity)

Can assume in the following that any least
cut in G contains at least B + 1 large arcs

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 9 / 16

Attacking a Least Cut

Lemma 3
Let Cl denote a least cut in G , i.e., a cut with least possible number of arcs. Then
Cl is optimal if it contains at most B large arcs.

Proof
After removal, Cl will have

the least possible number of remaining arcs and

all of those remaining arcs will be small arcs (least possible capacity)

Can assume in the following that any least
cut in G contains at least B + 1 large arcs

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 9 / 16

Attacking a Least Cut

Lemma 3
Let Cl denote a least cut in G , i.e., a cut with least possible number of arcs. Then
Cl is optimal if it contains at most B large arcs.

Proof
After removal, Cl will have

the least possible number of remaining arcs and

all of those remaining arcs will be small arcs (least possible capacity)

Can assume in the following that any least
cut in G contains at least B + 1 large arcs

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 9 / 16

Modifying the Graph

What we already discussed

Where we proceed

s t

1 1

u u

u

s t

1 1

1 1

1

s t

1 1

γ γ

γ

1 ≤ γ ≤ u

Call this graph G (γ) and denote the
capacity of a cut C in G (γ) by capγ(C).

But how do we choose γ?

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 10 / 16

Modifying the Graph

What we already discussed

Where we proceed

s t

1 1

u u

u

s t

1 1

1 1

1

s t

1 1

γ γ

γ

1 ≤ γ ≤ u

Call this graph G (γ) and denote the
capacity of a cut C in G (γ) by capγ(C).

But how do we choose γ?

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 10 / 16

Modifying the Graph

What we already discussed Where we proceed

s t

1 1

u u

u

s t

1 1

1 1

1

s t

1 1

γ γ

γ

1 ≤ γ ≤ u

Call this graph G (γ) and denote the
capacity of a cut C in G (γ) by capγ(C).

But how do we choose γ?

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 10 / 16

Modifying the Graph

What we already discussed Where we proceed

s t

1 1

u u

u

s t

1 1

1 1

1

s t

1 1

γ γ

γ

1 ≤ γ ≤ u

Call this graph G (γ) and denote the
capacity of a cut C in G (γ) by capγ(C).

But how do we choose γ?

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 10 / 16

Modifying the Graph

What we already discussed Where we proceed

s t

1 1

u u

u

s t

1 1

1 1

1

s t

1 1

γ γ

γ

1 ≤ γ ≤ u

Call this graph G (γ) and denote the
capacity of a cut C in G (γ) by capγ(C).

But how do we choose γ?

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 10 / 16

The Bisection Method

γ

capγ(C)

Cl

slope: q(Cl)

p(Cl)

Cm

slope: q(Cm)

p(Cm)

1 uγ̂

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 11 / 16

The Bisection Method

γ

capγ(C)

Cl

slope: q(Cl)

p(Cl)

Cm

slope: q(Cm)

p(Cm)

1 uγ̂

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 11 / 16

The Bisection Method

γ

capγ(C)

Cl

slope: q(Cl)

p(Cl)

Cm

slope: q(Cm)

p(Cm)

1 uγ̂

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 11 / 16

The Bisection Method

γ

capγ(C)

Cl

slope: q(Cl)

p(Cl)

Cm

slope: q(Cm)

p(Cm)

1 uγ̂

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 11 / 16

The Bisection Method

γ

capγ(C)

Cl

slope: q(Cl)

p(Cl)

Cm

slope: q(Cm)

p(Cm)

1 uγ̂

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 11 / 16

The Bisection Method

γ

capγ(C)

Cl

slope: q(Cl)

p(Cl)

Cm

slope: q(Cm)

p(Cm)

1

uγ̂

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 11 / 16

The Bisection Method

γ

capγ(C)

Cl

slope: q(Cl)

p(Cl)

Cm

slope: q(Cm)

p(Cm)

1 u

γ̂

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 11 / 16

The Bisection Method

γ

capγ(C)

Cl

slope: q(Cl)

p(Cl)

Cm

slope: q(Cm)

p(Cm)

1 uγ̂

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 11 / 16

The Bisection Method

γ

capγ(C)

Cl

slope: q(Cl)

p(Cl)

Cm

slope: q(Cm)

p(Cm)

1 uγ̂

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 11 / 16

The Bisection Method

γ

capγ(C)

Cl

slope: q(Cl)

p(Cl)

Cm

slope: q(Cm)

p(Cm)

1 uγ̂

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 11 / 16

The Algorithm
1 bisection (C1,C2)

2 Compute γ̂ and Ĉ

3 if q(Ĉ) /∈ {q(C1), q(C2)} then
4 return bisection(C1, Ĉ) ∪ bisection(Ĉ ,C2)
5 else
6 return {C1,C2}
7 end

Theorem 1

There is at least one cut C in the set returned by bisection(Cl ,Cm) such that the
solution R(C) is a (B + 1)-approximate solution for u-NFI on G .

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 12 / 16

The Algorithm
1 bisection (C1,C2)

2 Compute γ̂ and Ĉ

3 if q(Ĉ) /∈ {q(C1), q(C2)} then
4 return bisection(C1, Ĉ) ∪ bisection(Ĉ ,C2)
5 else
6 return {C1,C2}
7 end

Theorem 1

There is at least one cut C in the set returned by bisection(Cl ,Cm) such that the
solution R(C) is a (B + 1)-approximate solution for u-NFI on G .

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 12 / 16

The Algorithm
1 bisection (C1,C2)

2 Compute γ̂ and Ĉ

3 if q(Ĉ) /∈ {q(C1), q(C2)} then
4 return bisection(C1, Ĉ) ∪ bisection(Ĉ ,C2)
5 else
6 return {C1,C2}
7 end

Theorem 1

There is at least one cut C in the set returned by bisection(Cl ,Cm) such that the
solution R(C) is a (B + 1)-approximate solution for u-NFI on G .

Theorem 2

The algorithm bisection(Cl ,Cm) runs in polynomial time.

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 12 / 16

The Algorithm
1 bisection (C1,C2)

2 Compute γ̂ and Ĉ

3 if q(Ĉ) /∈ {q(C1), q(C2)} then
4 return bisection(C1, Ĉ) ∪ bisection(Ĉ ,C2)
5 else
6 return {C1,C2}
7 end

Theorem 1

There is at least one cut C in the set returned by bisection(Cl ,Cm) such that the
solution R(C) is a (B + 1)-approximate solution for u-NFI on G .

Theorem 2

The algorithm bisection(Cl ,Cm) runs in polynomial time.

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 12 / 16

Properties of New Cuts

Lemma 4

If the bisection method finds a new cut Ĉ by calling bisection(C1,C2), then
q(C1) > q(Ĉ) > q(C2).

Proof

γ

capγ(C)
C1

C2

γ1 γ2γ̂

Ĉ

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 13 / 16

Properties of New Cuts

Lemma 4

If the bisection method finds a new cut Ĉ by calling bisection(C1,C2), then
q(C1) > q(Ĉ) > q(C2).

Proof

γ

capγ(C)
C1

C2

γ1 γ2γ̂

Ĉ

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 13 / 16

Properties of New Cuts

Lemma 4

If the bisection method finds a new cut Ĉ by calling bisection(C1,C2), then
q(C1) > q(Ĉ) > q(C2).

Proof

γ

capγ(C)
C1

C2

γ1 γ2γ̂

Ĉ

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 13 / 16

Properties of New Cuts

Lemma 4

If the bisection method finds a new cut Ĉ by calling bisection(C1,C2), then
q(C1) > q(Ĉ) > q(C2).

Proof

γ

capγ(C)
C1

C2

γ1 γ2γ̂

Ĉ

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 13 / 16

Properties of New Cuts

Lemma 4

If the bisection method finds a new cut Ĉ by calling bisection(C1,C2), then
q(C1) > q(Ĉ) > q(C2).

Proof

γ

capγ(C)
C1

C2

γ1 γ2γ̂

Ĉ

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 13 / 16

Properties of New Cuts

Lemma 4

If the bisection method finds a new cut Ĉ by calling bisection(C1,C2), then
q(C1) > q(Ĉ) > q(C2).

Proof

γ

capγ(C)
C1

C2

γ1 γ2γ̂

Ĉ

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 13 / 16

Properties of New Cuts

Lemma 4

If the bisection method finds a new cut Ĉ by calling bisection(C1,C2), then
q(C1) > q(Ĉ) > q(C2).

Proof

γ

capγ(C)
C1

C2

γ1 γ2γ̂

Ĉ

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 13 / 16

Properties of New Cuts

Lemma 4

If the bisection method finds a new cut Ĉ by calling bisection(C1,C2), then
q(C1) > q(Ĉ) > q(C2).

Proof

γ

capγ(C)
C1

C2

γ1 γ2γ̂

Ĉ

Ĉ

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 13 / 16

Polynomial Running Time

Lemma 4

If the bisection method finds a new cut Ĉ by calling bisection(C1,C2), then
q(C1) > q(Ĉ) > q(C2).

For each k ∈ {0, . . . ,m}, the algorithm computes at most three cuts with
exactly k large arcs.

The algorithm has at most 3(m + 1) recursion steps.

Theorem 2

The algorithm bisection(Cl ,Cm) runs in polynomial time.

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 14 / 16

Polynomial Running Time

Lemma 4

If the bisection method finds a new cut Ĉ by calling bisection(C1,C2), then
q(C1) > q(Ĉ) > q(C2).

For each k ∈ {0, . . . ,m}, the algorithm computes at most three cuts with
exactly k large arcs.

The algorithm has at most 3(m + 1) recursion steps.

Theorem 2

The algorithm bisection(Cl ,Cm) runs in polynomial time.

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 14 / 16

Polynomial Running Time

Lemma 4

If the bisection method finds a new cut Ĉ by calling bisection(C1,C2), then
q(C1) > q(Ĉ) > q(C2).

For each k ∈ {0, . . . ,m}, the algorithm computes at most three cuts with
exactly k large arcs.

The algorithm has at most 3(m + 1) recursion steps.

Theorem 2

The algorithm bisection(Cl ,Cm) runs in polynomial time.

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 14 / 16

Polynomial Running Time

Lemma 4

If the bisection method finds a new cut Ĉ by calling bisection(C1,C2), then
q(C1) > q(Ĉ) > q(C2).

For each k ∈ {0, . . . ,m}, the algorithm computes at most three cuts with
exactly k large arcs.

The algorithm has at most 3(m + 1) recursion steps.

Theorem 2

The algorithm bisection(Cl ,Cm) runs in polynomial time.

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 14 / 16

Almost-Tightness of Approximation Ratio

s v1 v2 t

1

1

(B + 1)2 times

u

B times

u

1

B + 1 times

1

u

u

B + 1 times

u >> B

Cm

val(Cm) = (B + 1)2 − B

COPT

val(COPT) = B + 1

Cl

val(Cl) = (B + 1)2

Observation 2
The algorithm is not a B-approximation algorithm for u-NFI as
val(Cm) = B2 + B + 1 > B2 + B = B · val(COPT).

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 15 / 16

Almost-Tightness of Approximation Ratio

s v1 v2 t

1

1

(B + 1)2 times

u

B times

u

1

B + 1 times

1

u

u

B + 1 times

u >> B

Cm

val(Cm) = (B + 1)2 − B

COPT

val(COPT) = B + 1

Cl

val(Cl) = (B + 1)2

Observation 2
The algorithm is not a B-approximation algorithm for u-NFI as
val(Cm) = B2 + B + 1 > B2 + B = B · val(COPT).

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 15 / 16

Almost-Tightness of Approximation Ratio

s v1 v2 t

1

1

(B + 1)2 times

u

B times

u

1

B + 1 times

1

u

u

B + 1 times

u >> B

Cm

val(Cm) = (B + 1)2 − B

COPT

val(COPT) = B + 1

Cl

val(Cl) = (B + 1)2

Observation 2
The algorithm is not a B-approximation algorithm for u-NFI as
val(Cm) = B2 + B + 1 > B2 + B = B · val(COPT).

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 15 / 16

Almost-Tightness of Approximation Ratio

s v1 v2 t

1

1

(B + 1)2 times

u

B times

u

1

B + 1 times

1

u

u

B + 1 times

u >> B

Cm

val(Cm) = (B + 1)2 − B

COPT

val(COPT) = B + 1

Cl

val(Cl) = (B + 1)2

Observation 2
The algorithm is not a B-approximation algorithm for u-NFI as
val(Cm) = B2 + B + 1 > B2 + B = B · val(COPT).

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 15 / 16

Things I want you to say

After this presentation, I know ...

... that the crucial part of u-NFI is to find the right cut.

... how to find good candidates for the right cut.

... how to be a great president.

JAN BOECKMANN, M.Sc.

Am Essigberg 3

94315 Straubing

jan.boeckmann@tum.de

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 16 / 16

Things I want you to say

After this presentation, I know ...

... that the crucial part of u-NFI is to find the right cut.

... how to find good candidates for the right cut.

... how to be a great president.

JAN BOECKMANN, M.Sc.

Am Essigberg 3

94315 Straubing

jan.boeckmann@tum.de

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 16 / 16

Things I want you to say

After this presentation, I know ...

... that the crucial part of u-NFI is to find the right cut.

... how to find good candidates for the right cut.

... how to be a great president.

JAN BOECKMANN, M.Sc.

Am Essigberg 3

94315 Straubing

jan.boeckmann@tum.de

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 16 / 16

Things I want you to say

After this presentation, I know ...

... that the crucial part of u-NFI is to find the right cut.

... how to find good candidates for the right cut.

... how to be a great president.

JAN BOECKMANN, M.Sc.

Am Essigberg 3

94315 Straubing

jan.boeckmann@tum.de

Jan Boeckmann and Clemens Thielen Network Flow Interdiction 16th September 2020 16 / 16

