Improved Bounds on the Span of L(1,2)-edge Labeling of Some Infinite Regular Grids

Susobhan Bandopadhyay, Sasthi C. Ghosh and Subhasis Koley

Presented by Subhasis Koley Indian Statistical Institute, Kolkata Contribution

Outline

L(h, k)-vertex labeling:

- It is a labeling $f: V \to \{0, 1, \cdots, n\}$ of a graph G = (V, E).
- $|f(u) f(v)| \ge h$, if d(u, v) = 1,
- $|f(u) f(v)| \ge k$, if d(u, v) = 2,
- Span $\lambda_{h,k}(G)$ is minimum *n* for L(h, k)-vertex labeling in *G*.

L(*h*, *k*)-edge labeling:

- It is a labeling $f: E \to \{0, 1, \cdots, n\}$ of a graph G(V, E).
- $|f'(e_1) f'(e_2)| \ge h$, if $d(e_1, e_2) = 1$,
- $|f'(e_1) f'(e_2)| \ge k$, if $d(e_1, e_2) = 2$,
- Span $\lambda'_{h,k}(G)$ is minimum *n* for L(h,k)-edge labeling in *G*.

Frequency Channel Assignment Problem(CAP):

- CAP can be formulated as a *L*(*h*, *k*)-vertex(edge) labeling problem In Infinite regular grids.
- $\lambda_{h,k}(G)$ or $\lambda'_{h,k}(G)$ has practical relevance.

Main results

- We improve λ'_{1,2}(G) for infinite hexagonal grid(T₃), square grid(T₄) and triangular grid(T₆).
- $\lambda'_{1,2}(T_3) = 7$ (Previously $7 \le \lambda'_{1,2}(T_3) \le 8$, Lin. W. and Wu. J).
- $\lambda'_{1,2}(T_4) = 11$ (Previously $10 \le \lambda'_{1,2}(T_4) \le 11$, Lin. W. and Wu. J).
- $\lambda'_{1,2}(T_6) \ge 19$ (Previously $16 \le \lambda'_{1,2}(T_6) \le 20$, Calamoneri. T).

Line graph(L(G)(V', E')) of a graph G(V, E):

- Edges of *G* represent vertices in *L*(*G*).
- Edge exists in *L*(*G*) if corresponding edges in *G* have common vertex.
- $\lambda'_{h,k}(G) = \lambda_{h,k} L(G).$
- We derive the bounds for T_3 and T_4 using $L(T_3)$ and $L(T_4)$.
- For T_6 we derive the bound in T_6 directly.

Contribution ●○○○○○○○○○○○○

Infinite Hexagonal grid T₃

Figure 1 : A L(1,2)-vertex labeling of $L(T_3)$.

Theorem 1 $\lambda'_{1,2}(T_3) = 7.$

- g(v)_(x,y) = (x + 5y) mod 8 is a coloring function for vertices v_(x,y) at L(T₃)(Figure 1).
- $\lambda'_{1,2}(T_3) = \lambda_{1,2}(L(T_3)) \leq 7.$
- $\lambda'_{1,2}(T_3) \ge 7$ (Lin. W and Wu. J).
- Hence, $\lambda'_{1,2}(T_3) = \lambda_{1,2}(L(T_3)) = 7.$

Figure 2 : Sub graph *G* of $L(T_4)$.

- *d*, *e*, *h*, *i* are central vertices in G(Figure 2).
- a, b, c, f, g, j, k, l are peripheral vertices.

Observation 1

If f(x) = f(y) = c (Either $x \in \{a, b\}$, $y \in \{k, l\}$ or $x \in \{c, g\}$, $y \in \{f, j\}$ and c be a non-extreme color) then $c \pm 1$ can only be used in Either $\{a, b, k, l\} \setminus \{x, y\}$ or in $\{c, g, f, j\} \setminus \{x, y\}$.

Observation 2

If f(x) = f(y) = c and $|f(x) - f(u)| \ge 2$ (Either $\{x, u\} = \{a, b\}$, $y \in \{k, l\}$ or $\{x, u\} = \{c, g\}$, $y \in \{f, j\}$ and c be a non-extreme color) then c + 1 or c - 1 remain unused in G.

Theorem 2

$$\lambda_{1,2}(L(T_4)) \geq 11.$$

Figure 3 : Sub graph G_1 of $L(T_4)$

Proof

• If all vertices of *G* have distinct colors:

G have 12 vertices, $\lambda'_{1,2}(T_4) = \lambda_{1,2}(L(T_4)) \ge \lambda_{1,2}(G) \ge 11$.

- At most a pair of peripheral vertices have same color in all sub graphs isomorphic to G:
 - $f(a) = f(l), f(d) = f(a) + n, n \ge 2$ (Figure 3.a).
 - Reusing $x \in \{f(a), f(a) + n\}$ in G'_2 (Central vertices $\{b, e, f, t_2\}$) results $\lambda_{1,2}(G'_2) \ge 11$ (Observation 2).
 - Otherwise $\lambda_{1,2}(G') \geq 11$.
- At least one sub graph of *L*(*T*₄) isomorphic to *G* where two pair of peripheral vertices have same color:
 - f(a) = f(I), f(c) = f(j) or f(a) = f(I), f(b) = f(k).(Figure 3.a).
 - Using Observation 1 and Observation 2, $\lambda_{1,2}(G_1) \ge 11$.

- At least one sub graph of L(T₄) isomorphic to G where three pair of peripheral vertices have same color:
 f(a) = f(I), f(b) = f(k), f(c) = f(j)(Figure 3.a).
 Using Observation 1 and Observation 2, λ_{1,2}(G₁) ≥ 11.
 At least one sub graph of L(T₄) isomorphic to G where four pair of peripheral vertices have same color:
 f(a) = f(I) = c₁, f(b) = f(k) = c₂, f(g) = f(f) = c₃, f(c) = f(j) = c₄(Figure 3.b).
 - From Observation 1, Observation 2 and re usability of c_1 , c_2 , c_3 and c_4 , $\lambda_{1,2}(G_1) \ge 11$.

Infinite Triangular grid T₆

Figure 4 : A subgraph $G_v(V, E)$ of T_6 .

Set of edges S_1 , S_2 and S_3 are defined below.

- S_1 : All edges $e \in E$ (Figure 4) where e incident to v.
- S_2 : All edges $e \in E$ where end points of e are incident to $e_1 \in S_1$ and $e_2 \in S_1$.
- S_3 : $E \setminus (S_1 \cup S_2)$.

Preliminary results for L(1,2)-edge labeling at G_v : Let f'(e) = c where $e \in E$.

- $\forall e' \in E \setminus e, f'(e') \neq c \text{ if } e \in S_1;$
- If c is used in S₂(S₃) then c can be used atmost twice(thrice) in G.
- If *c* is used in $S_1/S_2/S_3$ then both c + 1 and c 1 can be used atmost once/twice/thrice in *G*.
- At least 6, 3 and 6 colors are required for *S*₁, *S*₂ and *S*₃ respectively.

Lemma 3

For optimal labeling of G_v , S_1 gets 6 consecutive colors including minimum or maximim color.

Proof.

- Optimal labeling must use 6 consecutive colors in S₁.
- Optimal labeling use Minimum(*min*) or maximum(*max*) color in S₁ as *min* 1 or *max* + 1 does not exists.

Theorem 4

For Optimal labeling of G_v , $\{c, c+2, c+4\}$ must be used in S_2 .

- C_{S₂} set of all colors c − 1, c and c + 1(f'(e) = c, e ∈ S₂).
- Cardinality of $C_{S_2} \ge 6$ when $\{c, c+2, c+4\}$ used in S_2 .
- Cardinality of $C_{S_2} \ge 7$ otherwise.

Lemma 5

If c, c + 1, c + 2 used thrice in S_3 , then c - 1 and c + 3 can not be used in S_3 .

- *H* is the set of vertices incident to edges of *S*₂.
- Color c can be used thrice in any one of two sets of three alternating vertices in H.
- If e₁, e₂ ∈ S₃, f(e₁) = c, f(e₂) = c − 1 then ∃e₃ ∈ S₂ such that e₁, e₂, e₃ form a triangle.
- $\exists e_1, e_2 \in S_3$ where $f(e_1) = c$, $f(e_2) = c 1$, $d(e_1, e_2) = 2$ leads a contradiction for c 1 used thrice.
- Same holds for c + 2 and c + 3.

Theorem 6

$$\lambda_{1,2}'(G_v) \geq 17.$$

- Let S₁ uses minimum color and needs 6 colors(lemma 3).
- Let S_2 uses c, c + 2 and c + 4 each twice(Theorem 4).
- S_1 uses colors $\{c 2, \dots, c 7\}$.
- c + 1, c + 3, c + 5 are used twice each in S_3 .
- Remaining 12 edges are colored by at least 5 colors, as no 4 consecutive colors can be used thrice in S₃(lemma 5).

•
$$\lambda'_{1,2}(G_v) \ge (c+10) - (c-7) = 17.$$

Infinite Triangular grid T₆

- ∃v' ∈ V for which minimum and maximum colors are not used in edges incident to v'. G_{v'} is isomorphic to G_v centering v'.
- min' and max' be minimum and maximum color used in S'_1.

Lemma 7

$$|max' - min'| \ge 7$$
 results $\lambda'_{1,2}(G_{v'}) \ge 19$.

- two colors c_1, c_2 are unused in S'_1 .
- $c_1, c_2, \min' 1, \max' + 1$ be used at most once in $G_{v'} \setminus S'_1$.
- They must be used at least twice in G_{v'} \ S'₁.
- To color the 4 edges, 2 additional colors are required resulting λ'_{1,2}(G_{ν'}) ≥ 19.

Infinite Triangular grid T₆

Theorem 8

$$\lambda'_{1,2}(T_3) \ge 19.$$

Proof.

u and w are in H.

- **1** *u*, *w* are connected by an edge.
 - Consecutive colors can be given to edges incident to both of *u* and *w*.
 - $|max min| \ge 7$ (*min*, *max* are minimum and maximum colors used in S₁) results $\lambda'_{1,2}(G_v) \ge 19$ (lemma 7).
- *u*, *w* are not connected by an edge but have a common neighbour.
 - Similar argument holds as previous one.

Future works

- To Determine \(\lambda'_{h,k}(G)\) for \(T_3, T_4\) and \(T_6\) for other values of \(h\) and \(k.\)
- To Determine $\lambda'_{h,k}(G)$ for other graph classes.