Improved Bounds on the Span of L(1,2)-edge Labeling of Some Infinite Regular Grids

Susobhan Bandopadhyay, Sasthi C. Ghosh and Subhasis Koley

Presented by
Subhasis Koley
Indian Statistical Institute, Kolkata

Outline

(1) Introduction, Motivation and Preliminaries
(2) Contribution
(3) Conclusion and Future works

$L(h, k)$-vertex labeling:

- It is a labeling $f: V \rightarrow\{0,1, \cdots, n\}$ of a graph $G=(V, E)$.
- $|f(u)-f(v)| \geq h$, if $d(u, v)=1$,
- $|f(u)-f(v)| \geq k$, if $d(u, v)=2$,
- Span $\lambda_{h, k}(G)$ is minimum n for $L(h, k)$-vertex labeling in G. $L(h, k)$-edge labeling:
- It is a labeling $f: E \rightarrow\{0,1, \cdots, n\}$ of a graph $G(V, E)$.
- $\left|f^{\prime}\left(e_{1}\right)-f^{\prime}\left(e_{2}\right)\right| \geq h$, if $d\left(e_{1}, e_{2}\right)=1$,
- $\left|f^{\prime}\left(e_{1}\right)-f^{\prime}\left(e_{2}\right)\right| \geq k$, if $d\left(e_{1}, e_{2}\right)=2$,
- Span $\lambda_{h, k}^{\prime}(G)$ is minimum n for $L(h, k)$-edge labeling in G.

Frequency Channel Assignment Problem(CAP):

- CAP can be formulated as a $L(h, k)$-vertex(edge) labeling problem In Infinite regular grids.
- $\lambda_{h, k}(G)$ or $\lambda_{h, k}^{\prime}(G)$ has practical relevance.

Main results

- We improve $\lambda_{1,2}^{\prime}(G)$ for infinite hexagonal grid $\left(T_{3}\right)$, square $\operatorname{grid}\left(T_{4}\right)$ and triangular $\operatorname{grid}\left(T_{6}\right)$.
- $\lambda_{1,2}^{\prime}\left(T_{3}\right)=7$ (Previously $7 \leq \lambda_{1,2}^{\prime}\left(T_{3}\right) \leq 8$, Lin. W. and Wu. J).
- $\lambda_{1,2}^{\prime}\left(T_{4}\right)=11$ (Previously $10 \leq \lambda_{1,2}^{\prime}\left(T_{4}\right) \leq 11$, Lin. W. and Wu. J).
- $\lambda_{1,2}^{\prime}\left(T_{6}\right) \geq 19$ (Previously $16 \leq \lambda_{1,2}^{\prime}\left(T_{6}\right) \leq 20$, Calamoneri. T).

Line graph $\left(L(G)\left(V^{\prime}, E^{\prime}\right)\right)$ of a graph $G(V, E)$:

- Edges of G represent vertices in $L(G)$.
- Edge exists in $L(G)$ if corresponding edges in G have common vertex.
- $\lambda_{h, k}^{\prime}(G)=\lambda_{h, k} L(G)$.
- We derive the bounds for T_{3} and T_{4} using $L\left(T_{3}\right)$ and $L\left(T_{4}\right)$.
- For T_{6} we derive the bound in T_{6} directly.

Figure 1: A $L(1,2)$-vertex labeling of $L\left(T_{3}\right)$.

Theorem 1

$\lambda_{1,2}^{\prime}\left(T_{3}\right)=7$.

Proof.

- $g(v)_{(x, y)}=(x+5 y) \bmod 8$ is a coloring function for vertices $v_{(x, y)}$ at $L\left(T_{3}\right)$ (Figure 1).
- $\lambda_{1,2}^{\prime}\left(T_{3}\right)=\lambda_{1,2}\left(L\left(T_{3}\right)\right) \leq 7$.
- $\lambda_{1,2}^{\prime}\left(T_{3}\right) \geq 7$ (Lin. W and Wu. J).
- Hence, $\lambda_{1,2}^{\prime}\left(T_{3}\right)=\lambda_{1,2}\left(L\left(T_{3}\right)\right)=7$.

Figure 2 : Sub graph G of $L\left(T_{4}\right)$.

- d, e, h, i are central vertices in G (Figure 2).
- a, b, c, f, g, j, k, I are peripheral vertices.

Observation 1

If $f(x)=f(y)=c($ Either $x \in\{a, b\}, y \in\{k, I\}$ or $x \in\{c, g\}$, $y \in\{f, j\}$ and c be a non-extreme color) then $c \pm 1$ can only be used in Either $\{a, b, k, l\} \backslash\{x, y\}$ or in $\{c, g, f, j\} \backslash\{x, y\}$.

Observation 2

If $f(x)=f(y)=c$ and $|f(x)-f(u)| \geq 2$ (Either $\{x, u\}=\{a, b\}$, $y \in\{k, l\}$ or $\{x, u\}=\{c, g\}, y \in\{f, j\}$ and c be a non-extreme color) then $c+1$ or $c-1$ remain unused in G.

Theorem 2

$\lambda_{1,2}\left(L\left(T_{4}\right)\right) \geq 11$.

a.

b.

Figure 3 : Sub graph G_{1} of $L\left(T_{4}\right)$

Proof

- If all vertices of G have distinct colors:
G have 12 vertices, $\lambda_{1,2}^{\prime}\left(T_{4}\right)=\lambda_{1,2}\left(L\left(T_{4}\right)\right) \geq \lambda_{1,2}(G) \geq 11$.
- At most a pair of peripheral vertices have same color in all sub graphs isomorphic to G :
- $f(a)=f(I), f(d)=f(a)+n, n \geq 2$ (Figure 3.a).
- Reusing $x \in\{f(a), f(a)+n\}$ in G_{2}^{\prime} (Central vertices $\left\{b, e, f, t_{2}\right\}$) results $\lambda_{1,2}\left(G_{2}^{\prime}\right) \geq 11$ (Observation 2).
- Otherwise $\lambda_{1,2}\left(G^{\prime}\right) \geq 11$.
- At least one sub graph of $L\left(T_{4}\right)$ isomorphic to G where two pair of peripheral vertices have same color:
- $f(a)=f(I), f(c)=f(j)$ or $f(a)=f(I)$, $f(b)=f(k)$.(Figure 3.a).
- Using Observation 1 and Observation 2, $\lambda_{1,2}\left(G_{1}\right) \geq 11$.
- At least one sub graph of $L\left(T_{4}\right)$ isomorphic to G where three pair of peripheral vertices have same color:
- $f(a)=f(I), f(b)=f(k), f(c)=f(j)$ (Figure 3.a).
- Using Observation 1 and Observation 2, $\lambda_{1,2}\left(G_{1}\right) \geq 11$.
- At least one sub graph of $L\left(T_{4}\right)$ isomorphic to G where four pair of peripheral vertices have same color:
- $f(a)=f(I)=c_{1}, f(b)=f(k)=c_{2}, f(g)=f(f)=c_{3}$, $f(c)=f(j)=c_{4}$ (Figure 3.b).
- From Observation 1, Observation 2 and re usability of c_{1}, c_{2}, c_{3} and $c_{4}, \lambda_{1,2}\left(G_{1}\right) \geq 11$.

Figure 4 : A subgraph $G_{V}(V, E)$ of T_{6}.
Set of edges S_{1}, S_{2} and S_{3} are defined below.

- S_{1} : All edges $e \in E$ (Figure 4) where e incident to v.
- S_{2} : All edges $e \in E$ where end points of e are incident to $e_{1} \in S_{1}$ and $e_{2} \in S_{1}$.
- $S_{3}: E \backslash\left(S_{1} \cup S_{2}\right)$.

Preliminary results for $L(1,2)$-edge labeling at G_{v} :

Let $f^{\prime}(e)=c$ where $e \in E$.

- $\forall e^{\prime} \in E \backslash e, f^{\prime}\left(e^{\prime}\right) \neq c$ if $e \in S_{1}$;
- If c is used in $S_{2}\left(S_{3}\right)$ then c can be used atmost twice(thrice) in G.
- If c is used in $S_{1} / S_{2} / S_{3}$ then both $c+1$ and $c-1$ can be used atmost once/twice/thrice in G.
- At least 6,3 and 6 colors are required for S_{1}, S_{2} and S_{3} respectively.

Lemma 3

For optimal labeling of G_{v}, S_{1} gets 6 consecutive colors including minimum or maximim color.

Proof.

- Optimal labeling must use 6 consecutive colors in S_{1}.
- Optimal labeling use Minimum(min) or maximum(max) color in S_{1} as min - 1 or max +1 does not exists.

Theorem 4

For Optimal labeling of $G_{v},\{c, c+2, c+4\}$ must be used in S_{2}.

Proof.

- $C_{S_{2}}$ set of all colors $c-1, c$ and $c+1\left(f^{\prime}(e)=c, e \in S_{2}\right)$.
- Cardinality of $C_{S_{2}} \geq 6$ when $\{c, c+2, c+4\}$ used in S_{2}.
- Cardinality of $C_{S_{2}} \geq 7$ otherwise.

Lemma 5

If $c, c+1, c+2$ used thrice in S_{3}, then $c-1$ and $c+3$ can not be used in S_{3}.

Proof.

- H is the set of vertices incident to edges of S_{2}.
- Color can be used thrice in any one of two sets of three alternating vertices in H .
- If $e_{1}, e_{2} \in S_{3}, f\left(e_{1}\right)=c, f\left(e_{2}\right)=c-1$ then $\exists e_{3} \in S_{2}$ such that e_{1}, e_{2}, e_{3} form a triangle.
- $\exists e_{1}, e_{2} \in S_{3}$ where $f\left(e_{1}\right)=c, f\left(e_{2}\right)=c-1, d\left(e_{1}, e_{2}\right)=2$ leads a contradiction for $c-1$ used thrice.
- Same holds for $c+2$ and $c+3$.

Theorem 6

$\lambda_{1,2}^{\prime}\left(G_{v}\right) \geq 17$.

Proof.

- Let S_{1} uses minimum color and needs 6 colors(lemma 3).
- Let S_{2} uses $c, c+2$ and $c+4$ each twice(Theorem 4).
- S_{1} uses colors $\{c-2, \cdots, c-7\}$.
- $c+1, c+3, c+5$ are used twice each in S_{3}.
- Remaining 12 edges are colored by at least 5 colors, as no 4 consecutive colors can be used thrice in S_{3} (lemma 5).
- $\lambda_{1,2}^{\prime}\left(G_{v}\right) \geq(c+10)-(c-7)=17$.
- $\exists v^{\prime} \in V$ for which minimum and maximum colors are not used in edges incident to $v^{\prime} . G_{v^{\prime}}$ is isomorphic to G_{v} centering v^{\prime}.
- min' and max' be minimum and maximum color used in S_{1}^{\prime}.

Lemma 7

$$
\left|m a x^{\prime}-\min ^{\prime}\right| \geq 7 \text { results } \lambda_{1,2}^{\prime}\left(G_{v^{\prime}}\right) \geq 19 .
$$

Proof.

- two colors c_{1}, c_{2} are unused in S_{1}^{\prime}.
- c_{1}, c_{2}, $\min ^{\prime}-1, \max ^{\prime}+1$ be used at most once in $G_{v^{\prime}} \backslash S_{1}^{\prime}$.
- They must be used at least twice in $G_{v^{\prime}} \backslash S_{1}^{\prime}$.
- To color the 4 edges, 2 additional colors are required resulting $\lambda_{1,2}^{\prime}\left(G_{v^{\prime}}\right) \geq 19$.

Theorem 8

$\lambda_{1,2}^{\prime}\left(T_{3}\right) \geq 19$.

Proof.

u and w are in H.
(1) u, w are connected by an edge.

- Consecutive colors can be given to edges incident to both of u and w.
- \mid max - min $\mid \geq 7$ (min, max are minimum and maximum colors used in S_{1}) results $\lambda_{1,2}^{\prime}\left(G_{v}\right) \geq 19$ (lemma 7).
(2) u, w are not connected by an edge but have a common neighbour.
- Similar argument holds as previous one.

Future works

- To Determine $\lambda_{h, k}^{\prime}(G)$ for T_{3}, T_{4} and T_{6} for other values of h and k.
- To Determine $\lambda_{h, k}^{\prime}(G)$ for other graph classes.

