Synchronized Pickup and Delivery Problems with Connecting FIFO Stack

M. Barbato ${ }^{1} \quad$ A. Ceselli N. Facchinetti

OptLab - Dept. of Computer Science University of Milan AD-COM Project ${ }^{2}$

CTW 2020-18th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

September 14-16, 2020

[^0]
Context

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
- Pickup network (item storage)
- Delivery network (item processing)

Context

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
- Pickup network (item storage)
- Delivery network (item processing)
- FIFO stack: Pickup network \rightarrow Delivery network

Context

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
- Pickup network (item storage)
- Delivery network (item processing)
- FIFO stack: Pickup network \rightarrow Delivery network
- 2 vehicles of small capacities k_{1} and k_{2} idle at 0
- 1-to-1 pickup and delivery minimizing the routing cost

$$
k_{1}=k_{2}=3
$$

Context

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
- Pickup network (item storage)
- Delivery network (item processing)
- FIFO stack: Pickup network \rightarrow Delivery network
- 2 vehicles of small capacities k_{1} and k_{2} idle at 0
- 1-to-1 pickup and delivery minimizing the routing cost

$$
k_{1}=k_{2}=3
$$

Context

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
- Pickup network (item storage)
- Delivery network (item processing)
- FIFO stack: Pickup network \rightarrow Delivery network
- 2 vehicles of small capacities k_{1} and k_{2} idle at 0
- 1-to-1 pickup and delivery minimizing the routing cost

$$
k_{1}=k_{2}=3
$$

Context

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
- Pickup network (item storage)
- Delivery network (item processing)
- FIFO stack: Pickup network \rightarrow Delivery network
- 2 vehicles of small capacities k_{1} and k_{2} idle at 0
- 1-to-1 pickup and delivery minimizing the routing cost

$$
k_{1}=k_{2}=3
$$

Context

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
- Pickup network (item storage)
- Delivery network (item processing)
- FIFO stack: Pickup network \rightarrow Delivery network
- 2 vehicles of small capacities k_{1} and k_{2} idle at 0
- 1-to-1 pickup and delivery minimizing the routing cost

$$
k_{1}=k_{2}=3
$$

Context

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
- Pickup network (item storage)
- Delivery network (item processing)
- FIFO stack: Pickup network \rightarrow Delivery network
- 2 vehicles of small capacities k_{1} and k_{2} idle at 0
- 1-to-1 pickup and delivery minimizing the routing cost

$$
k_{1}=k_{2}=3
$$

Context

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
- Pickup network (item storage)
- Delivery network (item processing)
- FIFO stack: Pickup network \rightarrow Delivery network
- 2 vehicles of small capacities k_{1} and k_{2} idle at 0
- 1-to-1 pickup and delivery minimizing the routing cost

$$
k_{1}=k_{2}=3
$$

Context

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
- Pickup network (item storage)
- Delivery network (item processing)
- FIFO stack: Pickup network \rightarrow Delivery network
- 2 vehicles of small capacities k_{1} and k_{2} idle at 0
- 1-to-1 pickup and delivery minimizing the routing cost

$$
k_{1}=k_{2}=3
$$

Context

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
- Pickup network (item storage)
- Delivery network (item processing)
- FIFO stack: Pickup network \rightarrow Delivery network
- 2 vehicles of small capacities k_{1} and k_{2} idle at 0
- 1-to-1 pickup and delivery minimizing the routing cost

$$
k_{1}=k_{2}=3
$$

Context

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
- Pickup network (item storage)
- Delivery network (item processing)
- FIFO stack: Pickup network \rightarrow Delivery network
- 2 vehicles of small capacities k_{1} and k_{2} idle at 0
- 1-to-1 pickup and delivery minimizing the routing cost

$$
k_{1}=k_{2}=3
$$

Context

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
- Pickup network (item storage)
- Delivery network (item processing)
- FIFO stack: Pickup network \rightarrow Delivery network
- 2 vehicles of small capacities k_{1} and k_{2} idle at 0
- 1-to-1 pickup and delivery minimizing the routing cost

$$
k_{1}=k_{2}=3
$$

Context

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
- Pickup network (item storage)
- Delivery network (item processing)
- FIFO stack: Pickup network \rightarrow Delivery network
- 2 vehicles of small capacities k_{1} and k_{2} idle at 0
- 1-to-1 pickup and delivery minimizing the routing cost

$$
k_{1}=k_{2}=3
$$

Context

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
- Pickup network (item storage)
- Delivery network (item processing)
- FIFO stack: Pickup network \rightarrow Delivery network
- 2 vehicles of small capacities k_{1} and k_{2} idle at 0
- 1-to-1 pickup and delivery minimizing the routing cost

$$
k_{1}=k_{2}=3
$$

Notation and Definitions

Basic data

- $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{A})$ complete digraph
- $\boldsymbol{c}^{1}, \boldsymbol{c}^{2}: \boldsymbol{A} \rightarrow \mathbb{R}_{+}$cost functions
- $\boldsymbol{k}_{1}, \boldsymbol{k}_{2}$ vehicle capacities

Notation and Definitions

Basic data

- $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{A})$ complete digraph
- $\boldsymbol{c}^{1}, \boldsymbol{c}^{2}: \boldsymbol{A} \rightarrow \mathbb{R}_{+}$cost functions
- $\boldsymbol{k}_{1}, \boldsymbol{k}_{2}$ vehicle capacities

Definitions

- pickup network: $\boldsymbol{D}^{1}=\left(\boldsymbol{G}, \boldsymbol{c}^{1}\right)$
- delivery network: $\boldsymbol{D}^{2}=\left(\boldsymbol{G}, \boldsymbol{c}^{2}\right)$

Notation and Definitions

Basic data

- $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{A})$ complete digraph
- $\boldsymbol{c}^{1}, \boldsymbol{c}^{2}: \boldsymbol{A} \rightarrow \mathbb{R}_{+}$cost functions
- $\boldsymbol{k}_{1}, \boldsymbol{k}_{2}$ vehicle capacities

Definitions

- pickup network: $\boldsymbol{D}^{1}=\left(\boldsymbol{G}, \boldsymbol{c}^{1}\right)$
- delivery network: $\boldsymbol{D}^{2}=\left(\boldsymbol{G}, \boldsymbol{c}^{2}\right)$
- trip: $\boldsymbol{t}=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{k}}\right)$ simple directed cycle (from/to 0)

Notation and Definitions

Basic data

- $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{A})$ complete digraph
- $\boldsymbol{c}^{1}, \boldsymbol{c}^{2}: \boldsymbol{A} \rightarrow \mathbb{R}_{+}$cost functions
- $\boldsymbol{k}_{1}, \boldsymbol{k}_{2}$ vehicle capacities

Definitions

- pickup network: $\boldsymbol{D}^{1}=\left(\boldsymbol{G}, \boldsymbol{c}^{1}\right)$
- delivery network: $\boldsymbol{D}^{2}=\left(\boldsymbol{G}, \boldsymbol{c}^{2}\right)$
- trip: $\boldsymbol{t}=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{k}}\right)$ simple directed cycle (from/to 0)
- $\boldsymbol{v}_{\boldsymbol{j}} \neq 0$ for all $\boldsymbol{j}=1,2, \ldots, \boldsymbol{k}$

Notation and Definitions

Basic data

- $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{A})$ complete digraph
- $\boldsymbol{c}^{1}, \boldsymbol{c}^{2}: \boldsymbol{A} \rightarrow \mathbb{R}_{+}$cost functions
- $\boldsymbol{k}_{1}, \boldsymbol{k}_{2}$ vehicle capacities

Definitions

- pickup network: $\boldsymbol{D}^{1}=\left(\boldsymbol{G}, \boldsymbol{c}^{1}\right)$
- delivery network: $\boldsymbol{D}^{2}=\left(\boldsymbol{G}, \boldsymbol{c}^{2}\right)$
- trip: $\boldsymbol{t}=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{k}}\right)$ simple directed cycle (from/to 0)
- $v_{j} \neq 0$ for all $\boldsymbol{j}=1,2, \ldots, k$
- for a trip in \boldsymbol{D}^{i} :
- feasibility: $\boldsymbol{k} \leq \boldsymbol{k}_{\boldsymbol{i}}$
- trip cost: $\boldsymbol{c}^{\boldsymbol{i}}(\boldsymbol{t})=\boldsymbol{c}^{\boldsymbol{i}}\left(0, \boldsymbol{v}_{1}\right)+\sum_{i=1}^{k-1} \boldsymbol{c}^{\boldsymbol{i}}\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{i+1}\right)+\boldsymbol{c}^{\boldsymbol{i}}\left(\boldsymbol{v}_{k}, 0\right)$

A General Problem Definition

A Synchronized Pickup and Delivery Problem with FIFO stack (SPDP-FS) is
$\min \boldsymbol{c}^{1}(\boldsymbol{P})+\boldsymbol{c}^{2}(\boldsymbol{D})$
s. t.

$$
\begin{gathered}
\boldsymbol{P}=\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{\ell}\right) \\
\boldsymbol{D}=\left(\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \ldots, \boldsymbol{d}_{\boldsymbol{m}}\right) \\
(\boldsymbol{P}, \boldsymbol{D}) \text { satisfies the FIFO }
\end{gathered}
$$

The No-Permutation Variant

No-Permutation Description:

- items on the FIFO stack respecting the pickup order
- items delivered in the order on the FIFO stack

The No-Permutation Variant

No-Permutation Description:

- items on the FIFO stack respecting the pickup order
- items delivered in the order on the FIFO stack

Definition

Let $\boldsymbol{T}=\left(\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{\ell}\right)$ be a sequence of trips.
The \boldsymbol{T}-sequence is the sequence of vertices in $\boldsymbol{V} \backslash 0$ in the order they appear in \boldsymbol{T}.

The No-Permutation Variant

No-Permutation Description:

- items on the FIFO stack respecting the pickup order
- items delivered in the order on the FIFO stack

Definition

Let $\boldsymbol{T}=\left(\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{\ell}\right)$ be a sequence of trips.
The \boldsymbol{T}-sequence is the sequence of vertices in $\boldsymbol{V} \backslash 0$ in the order they appear in \boldsymbol{T}.

Example

- $\boldsymbol{T}=((2,3),(1,5,4))$
- \boldsymbol{T}-sequence $=(2,3,1,5,4)$

The No-Permutation Variant

No-Permutation Description:

- items on the FIFO stack respecting the pickup order
- items delivered in the order on the FIFO stack

Definition

Let $\boldsymbol{T}=\left(\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{\ell}\right)$ be a sequence of trips.
The \boldsymbol{T}-sequence is the sequence of vertices in $\boldsymbol{V} \backslash 0$ in the order they appear in \boldsymbol{T}.

No-Permutation SPDP-FS

- $(\boldsymbol{P}, \boldsymbol{D})$ solution $\Leftrightarrow P$-sequence $\equiv D$-sequence

The No-Permutation Variant

No-Permutation Description:

- items on the FIFO stack respecting the pickup order
- items delivered in the order on the FIFO stack

Definition

Let $\boldsymbol{T}=\left(\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{\ell}\right)$ be a sequence of trips.
The \boldsymbol{T}-sequence is the sequence of vertices in $\boldsymbol{V} \backslash 0$ in the order they appear in \boldsymbol{T}.

No-Permutation SPDP-FS

- $(\boldsymbol{P}, \boldsymbol{D})$ solution $\Leftrightarrow P$-sequence $\equiv D$-sequence

Example

$$
\begin{aligned}
& \boldsymbol{P}=((2,3),(1,5,4)) \\
& \boldsymbol{D}=((2,3,1),(5,4))
\end{aligned}
$$

The Permutation Variants

Permutation Description

- Each pickup trip unloads a batch of items on the FIFO stack
- Each delivery trip loads a batch of items from the FIFO stack
- The order inside batches is arbitrary
- The pickup and delivery batches satisfy the FIFO

The Permutation Variants

Permutation Description

- Each pickup trip unloads a batch of items on the FIFO stack
- Each delivery trip loads a batch of items from the FIFO stack
- The order inside batches is arbitrary
- The pickup and delivery batches satisfy the FIFO

Pickup-Permutation Description

- Each pickup trip unloads a batch of items on the FIFO stack
- The order inside pickup batches is arbitrary
- Items delivered in the order on the FIFO stack

The Permutation Variants

Permutation Description

- Each pickup trip unloads a batch of items on the FIFO stack
- Each delivery trip loads a batch of items from the FIFO stack
- The order inside batches is arbitrary
- The pickup and delivery batches satisfy the FIFO

Pickup-Permutation Description

- Each pickup trip unloads a batch of items on the FIFO stack
- The order inside pickup batches is arbitrary
- Items delivered in the order on the FIFO stack

Delivery-Permutation Description

- Items on the FIFO stack respecting the pickup order
- Each delivery trip loads a batch of items from the FIFO stack
- The order inside delivery batches is arbitrary

The No-Overlap Requirement

No-Overlap Description

- Each delivery batch is contained in one pickup batch
- The other requirements stay valid

The No-Overlap Requirement

No-Overlap Description

- Each delivery batch is contained in one pickup batch
- The other requirements stay valid

Definition
Let $\boldsymbol{T}=\left(\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{\boldsymbol{k}}\right)$ be a sequence of trips
We write $V\left(\boldsymbol{t}_{\boldsymbol{i}}\right)$ to indicate the vertices in $\boldsymbol{t}_{\boldsymbol{i}}$

The No-Overlap Requirement

No-Overlap Description

- Each delivery batch is contained in one pickup batch
- The other requirements stay valid

Definition
Let $\boldsymbol{T}=\left(\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{\boldsymbol{k}}\right)$ be a sequence of trips
We write $V\left(t_{i}\right)$ to indicate the vertices in $\boldsymbol{t}_{\boldsymbol{i}}$
SPDP-FS with No-Overlap
$(\boldsymbol{P}, \boldsymbol{D})$ satisfies the requirement if for all \boldsymbol{i} there is \boldsymbol{j} s.t. $\boldsymbol{V}\left(\boldsymbol{d}_{\boldsymbol{i}}\right) \subseteq \boldsymbol{V}\left(\boldsymbol{p}_{\boldsymbol{j}}\right)$
Example

$$
\begin{aligned}
& \boldsymbol{P}=((2,3),(1,5,4)) \\
& \boldsymbol{D}=((3,2),(4,5,1))
\end{aligned}
$$

Variant Hierarchy

Complexity Results

Proposition. All SPDP-FS variants with No-Overlap requirement are solvable in polynomial time if $\boldsymbol{k}_{1}, \boldsymbol{k}_{2} \in\{1,2\}$.

Complexity Results

Proposition. All SPDP-FS variants with No-Overlap requirement are solvable in polynomial time if $\boldsymbol{k}_{1}, \boldsymbol{k}_{2} \in\{1,2\}$.
Proof. (Sketch)

- Preprocess all ways to pickup and deliver item singletons and item pairs and keep the best ones
- Choose the item singletons and pairs using a perfect matching

Complexity Results

Proposition. All SPDP-FS variants with No-Overlap requirement are solvable in polynomial time if $\boldsymbol{k}_{1}, \boldsymbol{k}_{2} \in\{1,2\}$.
Proof. (Sketch)

- Preprocess all ways to pickup and deliver item singletons and item pairs and keep the best ones
- Choose the item singletons and pairs using a perfect matching

Proposition. All SPDP-FS variants are NP-hard if \boldsymbol{k}_{1} and $\boldsymbol{k}_{\mathbf{2}}$ are part of the input.

Complexity Results

Proposition. All SPDP-FS variants with No-Overlap requirement are solvable in polynomial time if $\boldsymbol{k}_{1}, \boldsymbol{k}_{2} \in\{1,2\}$.
Proof. (Sketch)

- Preprocess all ways to pickup and deliver item singletons and item pairs and keep the best ones
- Choose the item singletons and pairs using a perfect matching

Proposition. All SPDP-FS variants are NP-hard if \boldsymbol{k}_{1} and $\boldsymbol{k}_{\mathbf{2}}$ are part of the input.
Proof. (Sketch)

- Let $\boldsymbol{n}=|\boldsymbol{V} \backslash 0|$, and choose $\boldsymbol{k}_{1}=\boldsymbol{n}, \boldsymbol{k}_{2}=1$ and $\boldsymbol{c}^{2} \equiv 0$.
- If c^{1} is metric then SPDP-FS solves the Euclidean-TSP on $\boldsymbol{D}=\left(\boldsymbol{G}, \boldsymbol{c}^{1}\right)$

No-Permutation Variants: the Splitting Subproblem

A solution to the SPDP-FS is completely described by

- P pickup trip sequence
- D delivery trip sequence
- \boldsymbol{F} item ordering on the FIFO stack

No-Permutation Variants: the Splitting Subproblem

A solution to the SPDP-FS is completely described by

- P pickup trip sequence
- D delivery trip sequence
- \boldsymbol{F} item ordering on the FIFO stack

In No-Permutation variants \boldsymbol{F} partially describes \boldsymbol{P} and \boldsymbol{D}

$$
\boldsymbol{F}=\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right)
$$

No-Permutation Variants: the Splitting Subproblem

A solution to the SPDP-FS is completely described by

- P pickup trip sequence
- D delivery trip sequence
- F item ordering on the FIFO stack

In No-Permutation variants \boldsymbol{F} partially describes \boldsymbol{P} and \boldsymbol{D}

$$
\begin{aligned}
& \boldsymbol{F}=\left(\begin{array}{ll}
1 & 2|34| 5
\end{array}\right) \\
& \boldsymbol{P}=((1,2),(3,4),(5))
\end{aligned}
$$

No-Permutation Variants: the Splitting Subproblem

A solution to the SPDP-FS is completely described by

- P pickup trip sequence
- D delivery trip sequence
- F item ordering on the FIFO stack

In No-Permutation variants \boldsymbol{F} partially describes \boldsymbol{P} and \boldsymbol{D}

$$
\begin{aligned}
& \boldsymbol{F}=\left(\begin{array}{lll}
1 & 2 & 3 \mid 4
\end{array}\right) \\
& \boldsymbol{P}=((1,2),(3,4),(5)) \\
& \boldsymbol{D}=((1,2,3),(4,5))
\end{aligned}
$$

No-Permutation Variants: the Splitting Subproblem

A solution to the SPDP-FS is completely described by

- P pickup trip sequence
- D delivery trip sequence
- \boldsymbol{F} item ordering on the FIFO stack

In No-Permutation variants \boldsymbol{F} partially describes \boldsymbol{P} and \boldsymbol{D}
Definition
Sequences obtained from \boldsymbol{F} as before are said splitting

No-Permutation Variants: the Splitting Subproblem

A solution to the SPDP-FS is completely described by

- P pickup trip sequence
- D delivery trip sequence
- \boldsymbol{F} item ordering on the FIFO stack

In No-Permutation variants \boldsymbol{F} partially describes \boldsymbol{P} and \boldsymbol{D}
Definition
Sequences obtained from \boldsymbol{F} as before are said splitting
Splitting subproblem. Given \boldsymbol{F} find its pair of splittings $(\boldsymbol{P}, \boldsymbol{D})$ minimizing $\boldsymbol{c}^{1}(\boldsymbol{P})+\boldsymbol{c}^{2}(\boldsymbol{D})$.

No-Permutation Variants: the Splitting Subproblem

A solution to the SPDP-FS is completely described by

- P pickup trip sequence
- D delivery trip sequence
- \boldsymbol{F} item ordering on the FIFO stack

In No-Permutation variants \boldsymbol{F} partially describes \boldsymbol{P} and \boldsymbol{D}
Definition
Sequences obtained from \boldsymbol{F} as before are said splitting

Splitting subproblem. Given \boldsymbol{F} find its pair of splittings $(\boldsymbol{P}, \boldsymbol{D})$ minimizing $\boldsymbol{c}^{1}(\boldsymbol{P})+\boldsymbol{c}^{2}(\boldsymbol{D})$.

Relevance: embedding in a 2-opt heuristic (see later)

Polynomial Algorithm for the Splitting Subproblem

No-Permutation, No-Overlap case.
Assume (wlog) $\boldsymbol{F}=(1,2, \ldots, \boldsymbol{n})$
Approach: $(0,0)-(\boldsymbol{n}, \boldsymbol{n})$ shortest-path in \mathcal{N}

Polynomial Algorithm for the Splitting Subproblem

No-Permutation, No-Overlap case.
Assume (wlog) $\boldsymbol{F}=(1,2, \ldots, \boldsymbol{n})$
Approach: $(0,0)-(\boldsymbol{n}, \boldsymbol{n})$ shortest-path in \mathcal{N}

- $(\boldsymbol{i}, \boldsymbol{j})$: first \boldsymbol{i} items picked-up and first \boldsymbol{j} delivered $(\boldsymbol{i} \geq \boldsymbol{j})$

Polynomial Algorithm for the Splitting Subproblem

No-Permutation, No-Overlap case.
Assume (wlog) $\boldsymbol{F}=(1,2, \ldots, \boldsymbol{n})$
Approach: $(0,0)-(\boldsymbol{n}, \boldsymbol{n})$ shortest-path in \mathcal{N}

- $(\boldsymbol{i}, \boldsymbol{j})$: first \boldsymbol{i} items picked-up and first \boldsymbol{j} delivered $(\boldsymbol{i} \geq \boldsymbol{j})$
- $(\boldsymbol{j}, \boldsymbol{j}) \rightarrow(\boldsymbol{i}, \boldsymbol{j})$: extend \boldsymbol{P} with trip $(\boldsymbol{j}+1, \boldsymbol{j}+2, \ldots, \boldsymbol{i})$

Polynomial Algorithm for the Splitting Subproblem

No-Permutation, No-Overlap case.
Assume (wlog) $\boldsymbol{F}=(1,2, \ldots, \boldsymbol{n})$
Approach: $(0,0)-(\boldsymbol{n}, \boldsymbol{n})$ shortest-path in \mathcal{N}

- $(\boldsymbol{i}, \boldsymbol{j})$: first \boldsymbol{i} items picked-up and first \boldsymbol{j} delivered $(\boldsymbol{i} \geq \boldsymbol{j})$
- $(\boldsymbol{j}, \boldsymbol{j}) \rightarrow(\boldsymbol{i}, \boldsymbol{j})$: extend \boldsymbol{P} with trip $(\boldsymbol{j}+1, \boldsymbol{j}+2, \ldots, \boldsymbol{i})$
- $\left(\boldsymbol{i}, \boldsymbol{j}_{1}\right) \rightarrow\left(\boldsymbol{i}, \boldsymbol{j}_{2}\right)$: extend \boldsymbol{D} with trip $\left(\boldsymbol{j}_{1}+1, \boldsymbol{j}_{1}+2 \ldots, \boldsymbol{j}_{2}\right)$

Polynomial Algorithm for the Splitting Subproblem

No-Permutation, No-Overlap case.
Assume (wlog) $\boldsymbol{F}=(1,2, \ldots, \boldsymbol{n})$
Approach: $(0,0)-(\boldsymbol{n}, \boldsymbol{n})$ shortest-path in \mathcal{N}

- $(\boldsymbol{i}, \boldsymbol{j})$: first \boldsymbol{i} items picked-up and first \boldsymbol{j} delivered $(\boldsymbol{i} \geq \boldsymbol{j})$
- $(\boldsymbol{j}, \boldsymbol{j}) \rightarrow(\boldsymbol{i}, \boldsymbol{j})$: extend \boldsymbol{P} with trip $(\boldsymbol{j}+1, \boldsymbol{j}+2, \ldots, \boldsymbol{i})$
- $\left(\boldsymbol{i}, \boldsymbol{j}_{1}\right) \rightarrow\left(\boldsymbol{i}, \boldsymbol{j}_{2}\right)$: extend \boldsymbol{D} with trip $\left(\boldsymbol{j}_{1}+1, \boldsymbol{j}_{1}+2 \ldots, \boldsymbol{j}_{2}\right)$
- costs preprocessed in polynomial time

Polynomial Algorithm for the Splitting Subproblem

No-Permutation, Overlap case.
Assume (wlog) $\boldsymbol{F}=(1,2, \ldots, \boldsymbol{n})$
Approach: $(0,0)-(\boldsymbol{n}, \boldsymbol{n})$ shortest-path in \mathcal{N}

Polynomial Algorithm for the Splitting Subproblem

No-Permutation,Overlap case.
Assume (wlog) $\boldsymbol{F}=(1,2, \ldots, \boldsymbol{n})$
Approach: $(0,0)-(\boldsymbol{n}, \boldsymbol{n})$ shortest-path in \mathcal{N}

No-Permutation Variants: A 2-Opt Heuristic

No-Permutation 2-Opt Heuristic

1) \boldsymbol{F} : TSP solution on $\boldsymbol{D}=(\boldsymbol{G}, \boldsymbol{c})$ with $\boldsymbol{c}(\boldsymbol{e})=\boldsymbol{c}^{1}(\boldsymbol{e})+\boldsymbol{c}^{2}(\boldsymbol{e})$
2) (P, D) : optimal splittings of \boldsymbol{F}
3) Generate the 2-opt neighborhood of \boldsymbol{F}, scored by splitting value
4) Choose the best neighbor and repeat 3) until no improvement

Computational Results: 2-Opt Performance

Instance Set:

- 11440 instances adapted from the Double TSP with Multiple Stacks [PM09]
- 3 classes of 10 instances with 33, 66, 132 items respectively
- Classes 33/66:
$\boldsymbol{k}_{1} \in\{3,6, \ldots 33 / 66\}$
$k_{2} \in\left\{3,6, \ldots, k_{1}\right\}$
- Class 132:
$k_{1} \in\{6,12, \ldots, 132\}$
$\boldsymbol{k}_{2} \in\left\{6,12, \ldots, \boldsymbol{k}_{1}\right\}$

Computational Results: 2-Opt Performance

Instance Set:

- 11440 instances adapted from the Double TSP with Multiple Stacks [PM09]
- 3 classes of 10 instances with $33,66,132$ items respectively
- Classes 33/66:

$$
\begin{aligned}
& \boldsymbol{k}_{1} \in\{3,6, \ldots 33 / 66\} \\
& \boldsymbol{k}_{2} \in\left\{3,6, \ldots, \boldsymbol{k}_{1}\right\}
\end{aligned}
$$

- Class 132:

Specs:

- 1st TSP solved with CONCORDE [CON03]
- C++ compiled with gcc 7.2 -03
- OS: Linux
- CPU: Intel i7-3630QM @2.40GHz
$k_{1} \in\{6,12, \ldots, 132\}$
$\boldsymbol{k}_{2} \in\left\{6,12, \ldots, \boldsymbol{k}_{1}\right\}$

Computational Results: 2-Opt Performance

Instance Set:

- 11440 instances adapted from the Double TSP with Multiple Stacks [PM09]
- 3 classes of 10 instances with 33, 66, 132 items respectively
- Classes 33/66:
$\boldsymbol{k}_{1} \in\{3,6, \ldots 33 / 66\}$ $\boldsymbol{k}_{2} \in\left\{3,6, \ldots, \boldsymbol{k}_{1}\right\}$
- Class 132:

Specs:

- 1st TSP solved with CONCORDE [CON03]
- C++ compiled with gcc 7.2 -03
- OS: Linux
- CPU: Intel i7-3630QM @2.40GHz
$\boldsymbol{k}_{1} \in\{6,12, \ldots, 132\}$
$k_{2} \in\left\{6,12, \ldots, k_{1}\right\}$

Computational Results: 2-Opt Quality

- IS: initial solution cost (1st splitting subproblem)
- FS: final solution cost (end of 2-opt heuristic)
- LB: $\operatorname{TSP}\left(D^{1}\right)+\mathbf{T S P}\left(D^{2}\right)$

Variant	Size	(IS - FS)/IS	(FS - LB)/LB
No-OvERLAP	33	0.84%	47.14%
	66	0.61%	54.27%
	132	0.41%	59.65%
OvERLAP	33	0.76%	45.09%
	66	0.52%	53.00%
	132	0.33%	59.07%

Table: Quality of heuristics and bounds. Results in average on all instances of the reported classes.

Conclusions and Perspectives

- 8 variants of the SPDP-FS formally characterized
- Work in progress: model the variants as MILPs
- Open: consider other objectives (e.g., completion time)
- Preliminary complexity results with fixed and non-fixed capacities
- Open: extend the results to other capacity values and other variants

References I

[CON03] CONCORDE. D. L. Applegate, R. E. Bixby, V. Chvatal and W. J. Cook, 2003. http://www.math.uwaterloo.ca/tsp/concorde.html.
[PM09] Hanne L Petersen and Oli BG Madsen. The double travelling salesman problem with multiple stacks-formulation and heuristic solution approaches. European Journal of Operational Research, 198(1):139-147, 2009.

Appendix - Fixed Capacity Complexity

Proposition. The SPDP-FS variants

- Permutation, No-Overlap
- No-Permutation, No-Overlap
are solvable in polynomial time if $\boldsymbol{k}_{1}, \boldsymbol{k}_{2} \in\{1,2\}$.

Appendix - Fixed Capacity Complexity

Proposition. The SPDP-FS variants

- Permutation,No-Overlap
- No-Permutation,No-Overlap
are solvable in polynomial time if $\boldsymbol{k}_{1}, \boldsymbol{k}_{2} \in\{1,2\}$. Proof.
- 2 copies $\boldsymbol{v}^{\prime}, \boldsymbol{v}^{\prime \prime}$ for all $\boldsymbol{v} \in \boldsymbol{V} \backslash 0$

Appendix - Fixed Capacity Complexity

Proposition. The SPDP-FS variants

- Permutation,No-Overlap
- No-Permutation,No-Overlap
are solvable in polynomial time if $\boldsymbol{k}_{1}, \boldsymbol{k}_{2} \in\{1,2\}$. Proof.
- 2 copies $\boldsymbol{v}^{\prime}, \boldsymbol{v}^{\prime \prime}$ for all $\boldsymbol{v} \in \boldsymbol{V} \backslash 0$
- edge $\left(v^{\prime}, v^{\prime \prime}\right)=$ trips to collect and delivery \boldsymbol{v}
- $c\left[v^{\prime}, v^{\prime \prime}\right]=$ cost to collect and deliver v

Appendix - Fixed Capacity Complexity

Proposition. The SPDP-FS variants

- Permutation,No-Overlap
- No-Permutation,No-Overlap
are solvable in polynomial time if $\boldsymbol{k}_{1}, \boldsymbol{k}_{2} \in\{1,2\}$. Proof.
- 2 copies $\boldsymbol{v}^{\prime}, \boldsymbol{v}^{\prime \prime}$ for all $\boldsymbol{v} \in \boldsymbol{V} \backslash 0$
- edge $\left(v^{\prime}, v^{\prime \prime}\right)=$ trips to collect and delivery \boldsymbol{v}
- $c\left[v^{\prime}, v^{\prime \prime}\right]=$ cost to collect and deliver v
- edge ($\boldsymbol{v}^{\prime}, w^{\prime}$)=best trips to collect and deliver $\boldsymbol{v}, \boldsymbol{w}$
- $c\left[v^{\prime}, w^{\prime}\right]=$ min-cost to collect and deliver $\boldsymbol{v}, \boldsymbol{w}$

Appendix - Fixed Capacity Complexity

Proposition. The SPDP-FS variants

- Permutation,No-Overlap
- No-Permutation,No-Overlap
are solvable in polynomial time if $\boldsymbol{k}_{1}, \boldsymbol{k}_{2} \in\{1,2\}$. Proof.
- 2 copies $\boldsymbol{v}^{\prime}, \boldsymbol{v}^{\prime \prime}$ for all $\boldsymbol{v} \in \boldsymbol{V} \backslash 0$
- edge $\left(v^{\prime}, v^{\prime \prime}\right)=$ trips to collect and delivery \boldsymbol{v}
- $c\left[v^{\prime}, v^{\prime \prime}\right]=$ cost to collect and deliver v
- edge $\left(v^{\prime}, w^{\prime}\right)=$ best trips to collect and deliver $\boldsymbol{v}, \boldsymbol{w}$
- $c\left[v^{\prime}, w^{\prime}\right]=$ min-cost to collect and deliver $\boldsymbol{v}, \boldsymbol{w}$

Appendix - Fixed Capacity Complexity

Proposition. The SPDP-FS variants

- Permutation,No-Overlap
- No-Permutation,No-Overlap
are solvable in polynomial time if $\boldsymbol{k}_{1}, \boldsymbol{k}_{2} \in\{1,2\}$. Proof.
- 2 copies $\boldsymbol{v}^{\prime}, \boldsymbol{v}^{\prime \prime}$ for all $\boldsymbol{v} \in \boldsymbol{V} \backslash 0$
- edge $\left(v^{\prime}, v^{\prime \prime}\right)=$ trips to collect and delivery \boldsymbol{v}
- $c\left[v^{\prime}, v^{\prime \prime}\right]=$ cost to collect and deliver v
- edge $\left(v^{\prime}, w^{\prime}\right)=$ best trips to collect and deliver $\boldsymbol{v}, \boldsymbol{w}$
- $c\left[v^{\prime}, w^{\prime}\right]=$ min-cost to collect and deliver $\boldsymbol{v}, \boldsymbol{w}$
- $c\left[v^{\prime \prime}, w^{\prime \prime}\right]=0$

Appendix - Fixed Capacity Complexity

Proposition. The SPDP-FS variants

- Permutation,No-Overlap
- No-Permutation,No-Overlap
are solvable in polynomial time if $\boldsymbol{k}_{1}, \boldsymbol{k}_{2} \in\{1,2\}$. Proof.
- 2 copies $\boldsymbol{v}^{\prime}, \boldsymbol{v}^{\prime \prime}$ for all $\boldsymbol{v} \in \boldsymbol{V} \backslash 0$
- edge $\left(v^{\prime}, v^{\prime \prime}\right)=$ trips to collect and delivery \boldsymbol{v}
- $c\left[v^{\prime}, v^{\prime \prime}\right]=$ cost to collect and deliver v
- edge $\left(v^{\prime}, w^{\prime}\right)=$ best trips to collect and deliver $\boldsymbol{v}, \boldsymbol{w}$
- $c\left[v^{\prime}, w^{\prime}\right]=$ min-cost to collect and deliver $\boldsymbol{v}, \boldsymbol{w}$
- $c\left[v^{\prime \prime}, w^{\prime \prime}\right]=0$

Solution=Perfect Matching
$\boldsymbol{P}=((2,4),(3),(1,5))$
$\boldsymbol{D}=((4),(2),(3),(5,1))$

Appendix - Permutation Variants Definitions

Definition

Let $\boldsymbol{T}=\left(\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{\boldsymbol{k}}\right)$ be a sequence of trips
We write $\boldsymbol{v} \prec_{\boldsymbol{T}} \boldsymbol{w}$ whenever $\boldsymbol{v} \in \boldsymbol{t}_{\boldsymbol{i}}$ and $\boldsymbol{w} \in \boldsymbol{t}_{\boldsymbol{j}}$ for some $1 \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{k}$ Otherwise we write $v \nprec \tau w$

Appendix - Permutation Variants Definitions

Definition

Let $\boldsymbol{T}=\left(\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{\boldsymbol{k}}\right)$ be a sequence of trips
We write $\boldsymbol{v} \prec_{\boldsymbol{T}} \boldsymbol{w}$ whenever $\boldsymbol{v} \in \boldsymbol{t}_{\boldsymbol{i}}$ and $\boldsymbol{w} \in \boldsymbol{t}_{\boldsymbol{j}}$ for some $1 \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{k}$
Otherwise we write $v \nprec \tau w$
Example
$\boldsymbol{T}=((1,3,5),(4,2))$. Then:

- $1 \prec_{T} 4$
- $1 \not \varliminf_{T} 3$
- $2 \nprec T 5$

Appendix - Permutation Variants Definitions

Definition
Let $\boldsymbol{T}=\left(\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{\boldsymbol{k}}\right)$ be a sequence of trips
We write $\boldsymbol{v} \prec_{\boldsymbol{T}} \boldsymbol{w}$ whenever $\boldsymbol{v} \in \boldsymbol{t}_{\boldsymbol{i}}$ and $\boldsymbol{w} \in \boldsymbol{t}_{\boldsymbol{j}}$ for some $1 \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{k}$
Otherwise we write $v \nprec \tau w$
Permutation. The pair (P, D) is a feasible solution if and only for every $v, w \in V \backslash\{0\}$ such that $v \prec_{p} w$ it also holds $w \not_{D} v$.
Delivery Permutation. The pair (P, D) is a feasible solution if and only if:

- for every $j=1,2, \ldots, m, V\left(d_{j}\right)$ is a set of elements which are consecutive in the P-sequence;
- for every $v, w \in V \backslash\{0\}$, if $v \prec_{D} w$ then v precedes w in the P-sequence.
Pickup Permutation. The pair (P, D) is a feasible solution for every $v, w \in V \backslash\{0\}$ such that $v \prec_{p} w$ we also have that v precedes w in the D-sequence.

Appendix - Pickup vs. Delivery Permutation

Let $k_{1}=k_{2}=3$ and $n=5$.

- Pickup Permutation OK, Delivery Permutation NOT:
- $P=((1,5,4),(2,3))$
- $D=((1),(5,4,3),(2))$

Appendix - Pickup vs. Delivery Permutation

Let $k_{1}=k_{2}=3$ and $n=5$.

- Pickup Permutation OK, Delivery Permutation NOT:
- $P=((1,5,4),(2,3))$
- $D=((1),(5,4,3),(2))$
- $F=(1,5,4,3,2)$ if pickup permutes

Appendix - Pickup vs. Delivery Permutation

Let $k_{1}=k_{2}=3$ and $n=5$.

- Pickup Permutation OK, Delivery Permutation NOT:
- $P=((1,5,4),(2,3))$
- $D=((1),(5,4,3),(2))$
- $F=(1,5,4,3,2)$ if pickup permutes
- $F=(1,5,4,2,3)$ if pickup cannot permute

Appendix - Pickup vs. Delivery Permutation

Let $k_{1}=k_{2}=3$ and $n=5$.

- Pickup Permutation OK, Delivery Permutation NOT:
- $P=((1,5,4),(2,3))$
- $D=((1),(5,4,3),(2))$
- $F=(1,5,4,3,2)$ if pickup permutes
- $F=(1,5,4,2,3)$ if pickup cannot permute
- Delivery Permutation OK, Pickup Permutation NOT:
- $P=((1,5,4),(2,3))$
- $D=((1),(5,2,4),(3))$

[^0]: $1_{\text {michele.barbato@unimi.it }}$
 ${ }^{2}$ https://ad-com.net/

