
Synchronized Pickup and Delivery Problems
with Connecting FIFO Stack

M. Barbato1 A. Ceselli N. Facchinetti

OptLab – Dept. of Computer Science
University of Milan
AD-COM Project2

CTW 2020 – 18th Cologne-Twente Workshop on Graphs and
Combinatorial Optimization

September 14-16, 2020

1michele.barbato@unimi.it
2https://ad-com.net/

https://ad-com.net/

Context

Research inspired by a collaboration with an industrial partner

Automated warehouse characteristics:

Pickup network (item storage)
Delivery network (item processing)

FIFO stack: Pickup network → Delivery network
2 vehicles of small capacities k1 and k2 idle at 0
1-to-1 pickup and delivery minimizing the routing cost

k1 = k2 = 3

0

1

2 3

4

5

0

3

15

4

2

23154 23154

Context

Research inspired by a collaboration with an industrial partner

Automated warehouse characteristics:

Pickup network (item storage)
Delivery network (item processing)
FIFO stack: Pickup network → Delivery network

2 vehicles of small capacities k1 and k2 idle at 0
1-to-1 pickup and delivery minimizing the routing cost

k1 = k2 = 3

0

1

2 3

4

5

0

3

15

4

2

23154 23154

Context

Research inspired by a collaboration with an industrial partner

Automated warehouse characteristics:

Pickup network (item storage)
Delivery network (item processing)
FIFO stack: Pickup network → Delivery network
2 vehicles of small capacities k1 and k2 idle at 0
1-to-1 pickup and delivery minimizing the routing cost

k1 = k2 = 3

0

1

2 3

4

5

0

3

15

4

2

23154 23154

Context

Research inspired by a collaboration with an industrial partner

Automated warehouse characteristics:

Pickup network (item storage)
Delivery network (item processing)
FIFO stack: Pickup network → Delivery network
2 vehicles of small capacities k1 and k2 idle at 0
1-to-1 pickup and delivery minimizing the routing cost

k1 = k2 = 3

0

1

2 3

4

5

0

3

15

4

2

23154 23154

Context

Research inspired by a collaboration with an industrial partner

Automated warehouse characteristics:

Pickup network (item storage)
Delivery network (item processing)
FIFO stack: Pickup network → Delivery network
2 vehicles of small capacities k1 and k2 idle at 0
1-to-1 pickup and delivery minimizing the routing cost

k1 = k2 = 3

0

1

2 3

4

5

0

3

15

4

2

23154 23154

Context

Research inspired by a collaboration with an industrial partner

Automated warehouse characteristics:

Pickup network (item storage)
Delivery network (item processing)
FIFO stack: Pickup network → Delivery network
2 vehicles of small capacities k1 and k2 idle at 0
1-to-1 pickup and delivery minimizing the routing cost

k1 = k2 = 3

0

1

2 3

4

5

0

3

15

4

2

23154 23154

Context

Research inspired by a collaboration with an industrial partner

Automated warehouse characteristics:

Pickup network (item storage)
Delivery network (item processing)
FIFO stack: Pickup network → Delivery network
2 vehicles of small capacities k1 and k2 idle at 0
1-to-1 pickup and delivery minimizing the routing cost

k1 = k2 = 3

0

1

2 3

4

5

0

3

15

4

2

23

154 23154

Context

Research inspired by a collaboration with an industrial partner

Automated warehouse characteristics:

Pickup network (item storage)
Delivery network (item processing)
FIFO stack: Pickup network → Delivery network
2 vehicles of small capacities k1 and k2 idle at 0
1-to-1 pickup and delivery minimizing the routing cost

k1 = k2 = 3

0

1

2 3

4

5

0

3

15

4

2

23

154 23154

Context

Research inspired by a collaboration with an industrial partner

Automated warehouse characteristics:

Pickup network (item storage)
Delivery network (item processing)
FIFO stack: Pickup network → Delivery network
2 vehicles of small capacities k1 and k2 idle at 0
1-to-1 pickup and delivery minimizing the routing cost

k1 = k2 = 3

0

1

2 3

4

5

0

3

15

4

2

23

154 23154

Context

Research inspired by a collaboration with an industrial partner

Automated warehouse characteristics:

Pickup network (item storage)
Delivery network (item processing)
FIFO stack: Pickup network → Delivery network
2 vehicles of small capacities k1 and k2 idle at 0
1-to-1 pickup and delivery minimizing the routing cost

k1 = k2 = 3

0

1

2 3

4

5

0

3

15

4

2

23

154 23154

Context

Research inspired by a collaboration with an industrial partner

Automated warehouse characteristics:

Pickup network (item storage)
Delivery network (item processing)
FIFO stack: Pickup network → Delivery network
2 vehicles of small capacities k1 and k2 idle at 0
1-to-1 pickup and delivery minimizing the routing cost

k1 = k2 = 3

0

1

2 3

4

5

0

3

15

4

2

23

154 23154

Context

Research inspired by a collaboration with an industrial partner

Automated warehouse characteristics:

Pickup network (item storage)
Delivery network (item processing)
FIFO stack: Pickup network → Delivery network
2 vehicles of small capacities k1 and k2 idle at 0
1-to-1 pickup and delivery minimizing the routing cost

k1 = k2 = 3

0

1

2 3

4

5

0

3

15

4

2

23154

23154

Context

Research inspired by a collaboration with an industrial partner

Automated warehouse characteristics:

Pickup network (item storage)
Delivery network (item processing)
FIFO stack: Pickup network → Delivery network
2 vehicles of small capacities k1 and k2 idle at 0
1-to-1 pickup and delivery minimizing the routing cost

k1 = k2 = 3

0

1

2 3

4

5

0

3

15

4

2

23154 231

54

Context

Research inspired by a collaboration with an industrial partner

Automated warehouse characteristics:

Pickup network (item storage)
Delivery network (item processing)
FIFO stack: Pickup network → Delivery network
2 vehicles of small capacities k1 and k2 idle at 0
1-to-1 pickup and delivery minimizing the routing cost

k1 = k2 = 3

0

1

2 3

4

5

0

3

15

4

2

23154 231

54

Context

Research inspired by a collaboration with an industrial partner

Automated warehouse characteristics:

Pickup network (item storage)
Delivery network (item processing)
FIFO stack: Pickup network → Delivery network
2 vehicles of small capacities k1 and k2 idle at 0
1-to-1 pickup and delivery minimizing the routing cost

k1 = k2 = 3

0

1

2 3

4

5

0

3

15

4

2

23154 23154

Notation and Definitions

Basic data

G = (V ,A) complete digraph

c1, c2 : A→ R+ cost functions

k1, k2 vehicle capacities

Definitions

pickup network: D1 = (G , c1)

delivery network: D2 = (G , c2)

trip: t = (v1, v2, . . . , vk) simple directed cycle (from/to 0)

vj 6= 0 for all j = 1, 2, . . . , k
for a trip in D i :

feasibility: k ≤ ki

trip cost: c i (t) = c i (0, v1) +
∑k−1

i=1 c i (vi , vi+1) + c i (vk , 0)

Notation and Definitions

Basic data

G = (V ,A) complete digraph

c1, c2 : A→ R+ cost functions

k1, k2 vehicle capacities

Definitions

pickup network: D1 = (G , c1)

delivery network: D2 = (G , c2)

trip: t = (v1, v2, . . . , vk) simple directed cycle (from/to 0)

vj 6= 0 for all j = 1, 2, . . . , k
for a trip in D i :

feasibility: k ≤ ki

trip cost: c i (t) = c i (0, v1) +
∑k−1

i=1 c i (vi , vi+1) + c i (vk , 0)

Notation and Definitions

Basic data

G = (V ,A) complete digraph

c1, c2 : A→ R+ cost functions

k1, k2 vehicle capacities

Definitions

pickup network: D1 = (G , c1)

delivery network: D2 = (G , c2)

trip: t = (v1, v2, . . . , vk) simple directed cycle (from/to 0)

vj 6= 0 for all j = 1, 2, . . . , k
for a trip in D i :

feasibility: k ≤ ki

trip cost: c i (t) = c i (0, v1) +
∑k−1

i=1 c i (vi , vi+1) + c i (vk , 0)

Notation and Definitions

Basic data

G = (V ,A) complete digraph

c1, c2 : A→ R+ cost functions

k1, k2 vehicle capacities

Definitions

pickup network: D1 = (G , c1)

delivery network: D2 = (G , c2)

trip: t = (v1, v2, . . . , vk) simple directed cycle (from/to 0)

vj 6= 0 for all j = 1, 2, . . . , k

for a trip in D i :

feasibility: k ≤ ki

trip cost: c i (t) = c i (0, v1) +
∑k−1

i=1 c i (vi , vi+1) + c i (vk , 0)

Notation and Definitions

Basic data

G = (V ,A) complete digraph

c1, c2 : A→ R+ cost functions

k1, k2 vehicle capacities

Definitions

pickup network: D1 = (G , c1)

delivery network: D2 = (G , c2)

trip: t = (v1, v2, . . . , vk) simple directed cycle (from/to 0)

vj 6= 0 for all j = 1, 2, . . . , k
for a trip in D i :

feasibility: k ≤ ki

trip cost: c i (t) = c i (0, v1) +
∑k−1

i=1 c i (vi , vi+1) + c i (vk , 0)

0

v1

v2

v3

A General Problem Definition

A Synchronized Pickup and Delivery Problem with FIFO stack
(SPDP-FS) is

min c1(P)+c2(D)

s. t.

P= (p1, p2, . . . , p`) with pi feasible trips partitioning V \ 0

D= (d1, d2, . . . , dm) with dj feasible trips partitioning V \ 0

(P,D) satisfies the FIFO

The No-Permutation Variant

No-Permutation Description:

items on the FIFO stack respecting the pickup order

items delivered in the order on the FIFO stack

Definition
Let T = (t1, t2, . . . , t`) be a sequence of trips.
The T -sequence is the sequence of vertices in V \ 0 in the order they
appear in T .

The No-Permutation Variant

No-Permutation Description:

items on the FIFO stack respecting the pickup order

items delivered in the order on the FIFO stack

Definition
Let T = (t1, t2, . . . , t`) be a sequence of trips.
The T -sequence is the sequence of vertices in V \ 0 in the order they
appear in T .

The No-Permutation Variant

No-Permutation Description:

items on the FIFO stack respecting the pickup order

items delivered in the order on the FIFO stack

Definition
Let T = (t1, t2, . . . , t`) be a sequence of trips.
The T -sequence is the sequence of vertices in V \ 0 in the order they
appear in T .

Example

T = ((2, 3), (1, 5, 4))

T -sequence= (2, 3, 1, 5, 4)

The No-Permutation Variant

No-Permutation Description:

items on the FIFO stack respecting the pickup order

items delivered in the order on the FIFO stack

Definition
Let T = (t1, t2, . . . , t`) be a sequence of trips.
The T -sequence is the sequence of vertices in V \ 0 in the order they
appear in T .

No-Permutation SPDP-FS

(P,D) solution⇔ P-sequence≡ D-sequence

The No-Permutation Variant

No-Permutation Description:

items on the FIFO stack respecting the pickup order

items delivered in the order on the FIFO stack

Definition
Let T = (t1, t2, . . . , t`) be a sequence of trips.
The T -sequence is the sequence of vertices in V \ 0 in the order they
appear in T .

No-Permutation SPDP-FS

(P,D) solution⇔ P-sequence≡ D-sequence

Example

P = ((2, 3), (1, 5, 4))

D = ((2, 3, 1), (5, 4))

0

1

2 3

4

5

0

3

15

4

2

154 231

The Permutation Variants

Permutation Description

Each pickup trip unloads a batch of items on the FIFO stack

Each delivery trip loads a batch of items from the FIFO stack

The order inside batches is arbitrary

The pickup and delivery batches satisfy the FIFO

Pickup-Permutation Description

Each pickup trip unloads a batch of items on the FIFO stack

The order inside pickup batches is arbitrary

Items delivered in the order on the FIFO stack

Delivery-Permutation Description

Items on the FIFO stack respecting the pickup order

Each delivery trip loads a batch of items from the FIFO stack

The order inside delivery batches is arbitrary

The Permutation Variants

Permutation Description

Each pickup trip unloads a batch of items on the FIFO stack

Each delivery trip loads a batch of items from the FIFO stack

The order inside batches is arbitrary

The pickup and delivery batches satisfy the FIFO

Pickup-Permutation Description

Each pickup trip unloads a batch of items on the FIFO stack

The order inside pickup batches is arbitrary

Items delivered in the order on the FIFO stack

Delivery-Permutation Description

Items on the FIFO stack respecting the pickup order

Each delivery trip loads a batch of items from the FIFO stack

The order inside delivery batches is arbitrary

The Permutation Variants

Permutation Description

Each pickup trip unloads a batch of items on the FIFO stack

Each delivery trip loads a batch of items from the FIFO stack

The order inside batches is arbitrary

The pickup and delivery batches satisfy the FIFO

Pickup-Permutation Description

Each pickup trip unloads a batch of items on the FIFO stack

The order inside pickup batches is arbitrary

Items delivered in the order on the FIFO stack

Delivery-Permutation Description

Items on the FIFO stack respecting the pickup order

Each delivery trip loads a batch of items from the FIFO stack

The order inside delivery batches is arbitrary

The No-Overlap Requirement

No-Overlap Description

Each delivery batch is contained in one pickup batch

The other requirements stay valid

Definition
Let T = (t1, t2, . . . , tk) be a sequence of trips
We write V (ti) to indicate the vertices in ti

SPDP-FS with No-Overlap
(P,D) satisfies the requirement if for all i there is j s.t. V (di) ⊆ V (pj)

Example

P = ((2, 3), (1, 5, 4))

D = ((3, 2), (4, 5, 1)) 0

1

2 3

4

5

0

3

15

4

2

451 32

The No-Overlap Requirement

No-Overlap Description

Each delivery batch is contained in one pickup batch

The other requirements stay valid

Definition
Let T = (t1, t2, . . . , tk) be a sequence of trips
We write V (ti) to indicate the vertices in ti

SPDP-FS with No-Overlap
(P,D) satisfies the requirement if for all i there is j s.t. V (di) ⊆ V (pj)

Example

P = ((2, 3), (1, 5, 4))

D = ((3, 2), (4, 5, 1)) 0

1

2 3

4

5

0

3

15

4

2

451 32

The No-Overlap Requirement

No-Overlap Description

Each delivery batch is contained in one pickup batch

The other requirements stay valid

Definition
Let T = (t1, t2, . . . , tk) be a sequence of trips
We write V (ti) to indicate the vertices in ti

SPDP-FS with No-Overlap
(P,D) satisfies the requirement if for all i there is j s.t. V (di) ⊆ V (pj)

Example

P = ((2, 3), (1, 5, 4))

D = ((3, 2), (4, 5, 1)) 0

1

2 3

4

5

0

3

15

4

2

451 32

Variant Hierarchy

Permutation

Pickup-Permutation Delivery-Permutation

Pickup-Permutation,No-Overlap

Delivery-Permutation,No-Overlap

No-Permutation

No-Permutation,No-Overlap

Complexity Results

Proposition. All SPDP-FS variants with No-Overlap requirement are
solvable in polynomial time if k1, k2 ∈ {1, 2}.

Proof. (Sketch)

Preprocess all ways to pickup and deliver item singletons and item
pairs and keep the best ones

Choose the item singletons and pairs using a perfect matching

Proposition. All SPDP-FS variants are NP-hard if k1 and k2 are part
of the input.
Proof. (Sketch)

Let n = |V \ 0|, and choose k1 = n, k2 = 1 and c2 ≡ 0.

If c1 is metric then SPDP-FS solves the Euclidean-TSP on
D = (G , c1)

Complexity Results

Proposition. All SPDP-FS variants with No-Overlap requirement are
solvable in polynomial time if k1, k2 ∈ {1, 2}.
Proof. (Sketch)

Preprocess all ways to pickup and deliver item singletons and item
pairs and keep the best ones

Choose the item singletons and pairs using a perfect matching

Proposition. All SPDP-FS variants are NP-hard if k1 and k2 are part
of the input.
Proof. (Sketch)

Let n = |V \ 0|, and choose k1 = n, k2 = 1 and c2 ≡ 0.

If c1 is metric then SPDP-FS solves the Euclidean-TSP on
D = (G , c1)

Complexity Results

Proposition. All SPDP-FS variants with No-Overlap requirement are
solvable in polynomial time if k1, k2 ∈ {1, 2}.
Proof. (Sketch)

Preprocess all ways to pickup and deliver item singletons and item
pairs and keep the best ones

Choose the item singletons and pairs using a perfect matching

Proposition. All SPDP-FS variants are NP-hard if k1 and k2 are part
of the input.

Proof. (Sketch)

Let n = |V \ 0|, and choose k1 = n, k2 = 1 and c2 ≡ 0.

If c1 is metric then SPDP-FS solves the Euclidean-TSP on
D = (G , c1)

Complexity Results

Proposition. All SPDP-FS variants with No-Overlap requirement are
solvable in polynomial time if k1, k2 ∈ {1, 2}.
Proof. (Sketch)

Preprocess all ways to pickup and deliver item singletons and item
pairs and keep the best ones

Choose the item singletons and pairs using a perfect matching

Proposition. All SPDP-FS variants are NP-hard if k1 and k2 are part
of the input.
Proof. (Sketch)

Let n = |V \ 0|, and choose k1 = n, k2 = 1 and c2 ≡ 0.

If c1 is metric then SPDP-FS solves the Euclidean-TSP on
D = (G , c1)

No-Permutation Variants: the Splitting Subproblem

A solution to the SPDP-FS is completely described by

P pickup trip sequence

D delivery trip sequence

F item ordering on the FIFO stack

In No-Permutation variants F partially describes P and D

Definition
Sequences obtained from F as before are said splitting

Splitting subproblem. Given F find its pair of splittings (P,D)
minimizing c1(P) + c2(D).

Relevance: embedding in a 2-opt heuristic (see later)

No-Permutation Variants: the Splitting Subproblem

A solution to the SPDP-FS is completely described by

P pickup trip sequence

D delivery trip sequence

F item ordering on the FIFO stack

In No-Permutation variants F partially describes P and D
F = (1 2 3 4 5)

P = ((1, 2), (3, 4), (5))

D = ((1, 2, 3), (4, 5))

Definition
Sequences obtained from F as before are said splitting

Splitting subproblem. Given F find its pair of splittings (P,D)
minimizing c1(P) + c2(D).

Relevance: embedding in a 2-opt heuristic (see later)

No-Permutation Variants: the Splitting Subproblem

A solution to the SPDP-FS is completely described by

P pickup trip sequence

D delivery trip sequence

F item ordering on the FIFO stack

In No-Permutation variants F partially describes P and D
F = (1 2|3 4|5)

P = ((1, 2), (3, 4), (5))

D = ((1, 2, 3), (4, 5))

Definition
Sequences obtained from F as before are said splitting

Splitting subproblem. Given F find its pair of splittings (P,D)
minimizing c1(P) + c2(D).

Relevance: embedding in a 2-opt heuristic (see later)

No-Permutation Variants: the Splitting Subproblem

A solution to the SPDP-FS is completely described by

P pickup trip sequence

D delivery trip sequence

F item ordering on the FIFO stack

In No-Permutation variants F partially describes P and D
F = (1 2 3|4 5)

P = ((1, 2), (3, 4), (5))

D = ((1, 2, 3), (4, 5))

Definition
Sequences obtained from F as before are said splitting

Splitting subproblem. Given F find its pair of splittings (P,D)
minimizing c1(P) + c2(D).

Relevance: embedding in a 2-opt heuristic (see later)

No-Permutation Variants: the Splitting Subproblem

A solution to the SPDP-FS is completely described by

P pickup trip sequence

D delivery trip sequence

F item ordering on the FIFO stack

In No-Permutation variants F partially describes P and D

Definition
Sequences obtained from F as before are said splitting

Splitting subproblem. Given F find its pair of splittings (P,D)
minimizing c1(P) + c2(D).

Relevance: embedding in a 2-opt heuristic (see later)

No-Permutation Variants: the Splitting Subproblem

A solution to the SPDP-FS is completely described by

P pickup trip sequence

D delivery trip sequence

F item ordering on the FIFO stack

In No-Permutation variants F partially describes P and D

Definition
Sequences obtained from F as before are said splitting

Splitting subproblem. Given F find its pair of splittings (P,D)
minimizing c1(P) + c2(D).

Relevance: embedding in a 2-opt heuristic (see later)

No-Permutation Variants: the Splitting Subproblem

A solution to the SPDP-FS is completely described by

P pickup trip sequence

D delivery trip sequence

F item ordering on the FIFO stack

In No-Permutation variants F partially describes P and D

Definition
Sequences obtained from F as before are said splitting

Splitting subproblem. Given F find its pair of splittings (P,D)
minimizing c1(P) + c2(D).

Relevance: embedding in a 2-opt heuristic (see later)

Polynomial Algorithm for the Splitting Subproblem

No-Permutation,No-Overlap case.

Assume (wlog) F = (1, 2, . . . , n)

Approach: (0, 0)− (n, n) shortest-path in N

N

k1 = 3

k2 = 2

P = ((1), (2, 3))

D = ((1), (2), (3))

0, 0

1, 0 1, 1

2, 0 2, 1

2, 1

2, 2

3, 0 3, 1 3, 2 3, 3

(i , j): first i items picked-up and first j delivered (i ≥ j)

(j , j)→ (i , j): extend P with trip (j + 1, j + 2, . . . , i)
(i , j1)→ (i , j2): extend D with trip (j1 + 1, j1 + 2 . . . , j2)

costs preprocessed in polynomial time

Polynomial Algorithm for the Splitting Subproblem

No-Permutation,No-Overlap case.

Assume (wlog) F = (1, 2, . . . , n)

Approach: (0, 0)− (n, n) shortest-path in N

N

k1 = 3

k2 = 2

P = ((1), (2, 3))

D = ((1), (2), (3))

0, 0

1, 0 1, 1

2, 0 2, 12, 1 2, 2

3, 0 3, 1 3, 2 3, 3

(i , j): first i items picked-up and first j delivered (i ≥ j)

(j , j)→ (i , j): extend P with trip (j + 1, j + 2, . . . , i)
(i , j1)→ (i , j2): extend D with trip (j1 + 1, j1 + 2 . . . , j2)

costs preprocessed in polynomial time

Polynomial Algorithm for the Splitting Subproblem

No-Permutation,No-Overlap case.

Assume (wlog) F = (1, 2, . . . , n)

Approach: (0, 0)− (n, n) shortest-path in N

N
k1 = 3

k2 = 2

P = ((1), (2, 3))

D = ((1), (2), (3))

0, 0

1, 0 1, 1

2, 0 2, 1

2, 1

2, 2

3, 0 3, 1 3, 2 3, 3

(i , j): first i items picked-up and first j delivered (i ≥ j)

(j , j)→ (i , j): extend P with trip (j + 1, j + 2, . . . , i)

(i , j1)→ (i , j2): extend D with trip (j1 + 1, j1 + 2 . . . , j2)

costs preprocessed in polynomial time

Polynomial Algorithm for the Splitting Subproblem

No-Permutation,No-Overlap case.

Assume (wlog) F = (1, 2, . . . , n)

Approach: (0, 0)− (n, n) shortest-path in N

N
k1 = 3

k2 = 2

P = ((1), (2, 3))

D = ((1), (2), (3))

0, 0

1, 0 1, 1

2, 0 2, 1

2, 1

2, 2

3, 0 3, 1 3, 2 3, 3

(i , j): first i items picked-up and first j delivered (i ≥ j)

(j , j)→ (i , j): extend P with trip (j + 1, j + 2, . . . , i)
(i , j1)→ (i , j2): extend D with trip (j1 + 1, j1 + 2 . . . , j2)

costs preprocessed in polynomial time

Polynomial Algorithm for the Splitting Subproblem

No-Permutation,No-Overlap case.

Assume (wlog) F = (1, 2, . . . , n)

Approach: (0, 0)− (n, n) shortest-path in N

N
k1 = 3

k2 = 2

P = ((1), (2, 3))

D = ((1), (2), (3))

0, 0

1, 0 1, 1

2, 0 2, 1

2, 1

2, 2

3, 0 3, 1 3, 2 3, 3

(i , j): first i items picked-up and first j delivered (i ≥ j)

(j , j)→ (i , j): extend P with trip (j + 1, j + 2, . . . , i)
(i , j1)→ (i , j2): extend D with trip (j1 + 1, j1 + 2 . . . , j2)

costs preprocessed in polynomial time

Polynomial Algorithm for the Splitting Subproblem

No-Permutation,Overlap case.

Assume (wlog) F = (1, 2, . . . , n)

Approach: (0, 0)− (n, n) shortest-path in N

N

P = ((1), (2, 3))

D = ((1, 2), (3))

k1 = 3

k2 = 2

0, 0

1, 0

2, 0

3, 0 3, 1 3, 2 3, 3

Polynomial Algorithm for the Splitting Subproblem

No-Permutation,Overlap case.

Assume (wlog) F = (1, 2, . . . , n)

Approach: (0, 0)− (n, n) shortest-path in N

N
P = ((1), (2, 3))

D = ((1, 2), (3))

k1 = 3

k2 = 2

0, 0

1, 0

2, 0

3, 0 3, 1 3, 2 3, 3

No-Permutation Variants: A 2-Opt Heuristic

No-Permutation 2-Opt Heuristic

1) F : TSP solution on D = (G , c) with c(e) = c1(e) + c2(e)

2) (P,D): optimal splittings of F
3) Generate the 2-opt neighborhood of F , scored by splitting value

4) Choose the best neighbor and repeat 3) until no improvement

Computational Results: 2-Opt Performance

Instance Set:

11440 instances adapted from the Double TSP
with Multiple Stacks [PM09]

3 classes of 10 instances with 33, 66, 132 items

respectively

Classes 33/66:
k1 ∈ {3, 6, . . . 33/66}
k2 ∈ {3, 6, . . . , k1}
Class 132:
k1 ∈ {6, 12, . . . , 132}
k2 ∈ {6, 12, . . . , k1}

Specs:

1st TSP solved with
CONCORDE [CON03]

C++ compiled with
gcc 7.2 -O3

OS: Linux

CPU: Intel i7-3630QM
@2.40GHz

Computational Results: 2-Opt Performance

Instance Set:

11440 instances adapted from the Double TSP
with Multiple Stacks [PM09]

3 classes of 10 instances with 33, 66, 132 items

respectively

Classes 33/66:
k1 ∈ {3, 6, . . . 33/66}
k2 ∈ {3, 6, . . . , k1}
Class 132:
k1 ∈ {6, 12, . . . , 132}
k2 ∈ {6, 12, . . . , k1}

Specs:

1st TSP solved with
CONCORDE [CON03]

C++ compiled with
gcc 7.2 -O3

OS: Linux

CPU: Intel i7-3630QM
@2.40GHz

Computational Results: 2-Opt Performance

Instance Set:

11440 instances adapted from the Double TSP
with Multiple Stacks [PM09]

3 classes of 10 instances with 33, 66, 132 items

respectively

Classes 33/66:
k1 ∈ {3, 6, . . . 33/66}
k2 ∈ {3, 6, . . . , k1}
Class 132:
k1 ∈ {6, 12, . . . , 132}
k2 ∈ {6, 12, . . . , k1}

Specs:

1st TSP solved with
CONCORDE [CON03]

C++ compiled with
gcc 7.2 -O3

OS: Linux

CPU: Intel i7-3630QM
@2.40GHz

Computational Results: 2-Opt Quality

IS: initial solution cost (1st splitting subproblem)

FS: final solution cost (end of 2-opt heuristic)

LB: TSP(D1)+TSP(D2)

Variant Size (IS− FS)/IS (FS− LB)/LB
No-Overlap 33 0.84% 47.14%

66 0.61% 54.27%
132 0.41% 59.65%

Overlap 33 0.76% 45.09%
66 0.52% 53.00%

132 0.33% 59.07%

Table: Quality of heuristics and bounds. Results in average on all instances of
the reported classes.

Conclusions and Perspectives

8 variants of the SPDP-FS formally characterized

Work in progress: model the variants as MILPs
Open: consider other objectives (e.g., completion time)

Preliminary complexity results with fixed and non-fixed capacities

Open: extend the results to other capacity values and other variants

References I

[CON03] CONCORDE. D. L. Applegate, R. E. Bixby, V. Chvatal and W.
J. Cook, 2003.
http://www.math.uwaterloo.ca/tsp/concorde.html .

[PM09] Hanne L Petersen and Oli BG Madsen. The double travelling
salesman problem with multiple stacks–formulation and
heuristic solution approaches. European Journal of Operational
Research, 198(1):139–147, 2009.

http://www.math.uwaterloo.ca/tsp/concorde.html

Appendix — Fixed Capacity Complexity

Proposition. The SPDP-FS variants

Permutation,No-Overlap

No-Permutation,No-Overlap

are solvable in polynomial time if k1, k2 ∈ {1, 2}.

Proof.

2 copies v ′, v ′′ for all v ∈ V \ 0

edge (v ′, v ′′)=trips to collect and delivery v
c[v ′, v ′′] =cost to collect and deliver v
edge (v ′,w ′)=best trips to collect and deliver v ,w
c[v ′,w ′] =min-cost to collect and deliver v ,w
c[v ′′,w ′′] = 0

1

2

3

4

5

2

5

1

4

3

P = . . . (2) . . .

D = . . . (2) . . .

P = . . . (2, 4) . . .

D = . . . (4, 2) . . .

P = . . . (2, 4) . . .

D = . . . (2), (4) . . .

Solution=Perfect Matching

P = ((2, 4), (3), (1, 5))

D = ((4), (2), (3), (5, 1))

Appendix — Fixed Capacity Complexity

Proposition. The SPDP-FS variants

Permutation,No-Overlap

No-Permutation,No-Overlap

are solvable in polynomial time if k1, k2 ∈ {1, 2}.
Proof.

2 copies v ′, v ′′ for all v ∈ V \ 0

edge (v ′, v ′′)=trips to collect and delivery v
c[v ′, v ′′] =cost to collect and deliver v
edge (v ′,w ′)=best trips to collect and deliver v ,w
c[v ′,w ′] =min-cost to collect and deliver v ,w
c[v ′′,w ′′] = 0

1

2

3

4

5

2

5

1

4

3

P = . . . (2) . . .

D = . . . (2) . . .

P = . . . (2, 4) . . .

D = . . . (4, 2) . . .

P = . . . (2, 4) . . .

D = . . . (2), (4) . . .

Solution=Perfect Matching

P = ((2, 4), (3), (1, 5))

D = ((4), (2), (3), (5, 1))

Appendix — Fixed Capacity Complexity

Proposition. The SPDP-FS variants

Permutation,No-Overlap

No-Permutation,No-Overlap

are solvable in polynomial time if k1, k2 ∈ {1, 2}.
Proof.

2 copies v ′, v ′′ for all v ∈ V \ 0

edge (v ′, v ′′)=trips to collect and delivery v
c[v ′, v ′′] =cost to collect and deliver v

edge (v ′,w ′)=best trips to collect and deliver v ,w
c[v ′,w ′] =min-cost to collect and deliver v ,w
c[v ′′,w ′′] = 0

1

2

3

4

5

2

5

1

4

3 P = . . . (2) . . .

D = . . . (2) . . .

P = . . . (2, 4) . . .

D = . . . (4, 2) . . .

P = . . . (2, 4) . . .

D = . . . (2), (4) . . .

Solution=Perfect Matching

P = ((2, 4), (3), (1, 5))

D = ((4), (2), (3), (5, 1))

Appendix — Fixed Capacity Complexity

Proposition. The SPDP-FS variants

Permutation,No-Overlap

No-Permutation,No-Overlap

are solvable in polynomial time if k1, k2 ∈ {1, 2}.
Proof.

2 copies v ′, v ′′ for all v ∈ V \ 0

edge (v ′, v ′′)=trips to collect and delivery v
c[v ′, v ′′] =cost to collect and deliver v
edge (v ′,w ′)=best trips to collect and deliver v ,w
c[v ′,w ′] =min-cost to collect and deliver v ,w

c[v ′′,w ′′] = 0

1

2

3

4

5

2

5

1

4

3

P = . . . (2) . . .

D = . . . (2) . . .

P = . . . (2, 4) . . .

D = . . . (4, 2) . . .

P = . . . (2, 4) . . .

D = . . . (2), (4) . . .

Solution=Perfect Matching

P = ((2, 4), (3), (1, 5))

D = ((4), (2), (3), (5, 1))

Appendix — Fixed Capacity Complexity

Proposition. The SPDP-FS variants

Permutation,No-Overlap

No-Permutation,No-Overlap

are solvable in polynomial time if k1, k2 ∈ {1, 2}.
Proof.

2 copies v ′, v ′′ for all v ∈ V \ 0

edge (v ′, v ′′)=trips to collect and delivery v
c[v ′, v ′′] =cost to collect and deliver v
edge (v ′,w ′)=best trips to collect and deliver v ,w
c[v ′,w ′] =min-cost to collect and deliver v ,w

c[v ′′,w ′′] = 0

1

2

3

4

5

2

5

1

4

3

P = . . . (2) . . .

D = . . . (2) . . .

P = . . . (2, 4) . . .

D = . . . (4, 2) . . .

P = . . . (2, 4) . . .

D = . . . (2), (4) . . .

Solution=Perfect Matching

P = ((2, 4), (3), (1, 5))

D = ((4), (2), (3), (5, 1))

Appendix — Fixed Capacity Complexity

Proposition. The SPDP-FS variants

Permutation,No-Overlap

No-Permutation,No-Overlap

are solvable in polynomial time if k1, k2 ∈ {1, 2}.
Proof.

2 copies v ′, v ′′ for all v ∈ V \ 0

edge (v ′, v ′′)=trips to collect and delivery v
c[v ′, v ′′] =cost to collect and deliver v
edge (v ′,w ′)=best trips to collect and deliver v ,w
c[v ′,w ′] =min-cost to collect and deliver v ,w
c[v ′′,w ′′] = 0

1

2

3

4

5

2

5

1

4

3

P = . . . (2) . . .

D = . . . (2) . . .

P = . . . (2, 4) . . .

D = . . . (4, 2) . . .

P = . . . (2, 4) . . .

D = . . . (2), (4) . . .

Solution=Perfect Matching

P = ((2, 4), (3), (1, 5))

D = ((4), (2), (3), (5, 1))

Appendix — Fixed Capacity Complexity

Proposition. The SPDP-FS variants

Permutation,No-Overlap

No-Permutation,No-Overlap

are solvable in polynomial time if k1, k2 ∈ {1, 2}.
Proof.

2 copies v ′, v ′′ for all v ∈ V \ 0

edge (v ′, v ′′)=trips to collect and delivery v
c[v ′, v ′′] =cost to collect and deliver v
edge (v ′,w ′)=best trips to collect and deliver v ,w
c[v ′,w ′] =min-cost to collect and deliver v ,w
c[v ′′,w ′′] = 0

1

2

3

4

5

2

5

1

4

3

P = . . . (2) . . .

D = . . . (2) . . .

P = . . . (2, 4) . . .

D = . . . (4, 2) . . .

P = . . . (2, 4) . . .

D = . . . (2), (4) . . .

Solution=Perfect Matching

P = ((2, 4), (3), (1, 5))

D = ((4), (2), (3), (5, 1))

Appendix — Permutation Variants Definitions

Definition
Let T = (t1, t2, . . . , tk) be a sequence of trips
We write v ≺T w whenever v ∈ ti and w ∈ tj for some 1 ≤ i < j ≤ k
Otherwise we write v 6≺T w

Permutation. The pair (P,D) is a feasible solution if and only for
every v ,w ∈ V \ {0} such that v ≺P w it also holds
w 6≺D v .

Delivery Permutation. The pair (P,D) is a feasible solution if and
only if:

for every j = 1, 2, . . . ,m, V (dj) is a set of elements
which are consecutive in the P-sequence;
for every v ,w ∈ V \ {0}, if v ≺D w then v precedes
w in the P-sequence.

Pickup Permutation. The pair (P,D) is a feasible solution for every
v ,w ∈ V \ {0} such that v ≺P w we also have that v
precedes w in the D-sequence.

Appendix — Permutation Variants Definitions

Definition
Let T = (t1, t2, . . . , tk) be a sequence of trips
We write v ≺T w whenever v ∈ ti and w ∈ tj for some 1 ≤ i < j ≤ k
Otherwise we write v 6≺T w

Example
T = ((1, 3, 5), (4, 2)). Then:

1 ≺T 4

1 6≺T 3

2 6≺T 5

Permutation. The pair (P,D) is a feasible solution if and only for
every v ,w ∈ V \ {0} such that v ≺P w it also holds
w 6≺D v .

Delivery Permutation. The pair (P,D) is a feasible solution if and
only if:

for every j = 1, 2, . . . ,m, V (dj) is a set of elements
which are consecutive in the P-sequence;
for every v ,w ∈ V \ {0}, if v ≺D w then v precedes
w in the P-sequence.

Pickup Permutation. The pair (P,D) is a feasible solution for every
v ,w ∈ V \ {0} such that v ≺P w we also have that v
precedes w in the D-sequence.

Appendix — Permutation Variants Definitions

Definition
Let T = (t1, t2, . . . , tk) be a sequence of trips
We write v ≺T w whenever v ∈ ti and w ∈ tj for some 1 ≤ i < j ≤ k
Otherwise we write v 6≺T w

Permutation. The pair (P,D) is a feasible solution if and only for
every v ,w ∈ V \ {0} such that v ≺P w it also holds
w 6≺D v .

Delivery Permutation. The pair (P,D) is a feasible solution if and
only if:

for every j = 1, 2, . . . ,m, V (dj) is a set of elements
which are consecutive in the P-sequence;
for every v ,w ∈ V \ {0}, if v ≺D w then v precedes
w in the P-sequence.

Pickup Permutation. The pair (P,D) is a feasible solution for every
v ,w ∈ V \ {0} such that v ≺P w we also have that v
precedes w in the D-sequence.

Appendix — Pickup vs. Delivery Permutation

Let k1 = k2 = 3 and n = 5.

Pickup Permutation OK, Delivery Permutation NOT:

P = ((1, 5, 4), (2, 3))
D = ((1), (5, 4, 3), (2))

F = (1, 5, 4, 3, 2) if pickup permutes
F = (1, 5, 4, 2, 3) if pickup cannot permute

Delivery Permutation OK, Pickup Permutation NOT:

P = ((1, 5, 4), (2, 3))
D = ((1), (5, 2, 4), (3))

Appendix — Pickup vs. Delivery Permutation

Let k1 = k2 = 3 and n = 5.

Pickup Permutation OK, Delivery Permutation NOT:

P = ((1, 5, 4), (2, 3))
D = ((1), (5, 4, 3), (2))
F = (1, 5, 4, 3, 2) if pickup permutes

F = (1, 5, 4, 2, 3) if pickup cannot permute

Delivery Permutation OK, Pickup Permutation NOT:

P = ((1, 5, 4), (2, 3))
D = ((1), (5, 2, 4), (3))

Appendix — Pickup vs. Delivery Permutation

Let k1 = k2 = 3 and n = 5.

Pickup Permutation OK, Delivery Permutation NOT:

P = ((1, 5, 4), (2, 3))
D = ((1), (5, 4, 3), (2))
F = (1, 5, 4, 3, 2) if pickup permutes
F = (1, 5, 4, 2, 3) if pickup cannot permute

Delivery Permutation OK, Pickup Permutation NOT:

P = ((1, 5, 4), (2, 3))
D = ((1), (5, 2, 4), (3))

Appendix — Pickup vs. Delivery Permutation

Let k1 = k2 = 3 and n = 5.

Pickup Permutation OK, Delivery Permutation NOT:

P = ((1, 5, 4), (2, 3))
D = ((1), (5, 4, 3), (2))
F = (1, 5, 4, 3, 2) if pickup permutes
F = (1, 5, 4, 2, 3) if pickup cannot permute

Delivery Permutation OK, Pickup Permutation NOT:

P = ((1, 5, 4), (2, 3))
D = ((1), (5, 2, 4), (3))

	Introductory Slides
	Problem Variants
	Subproblems and a Heuristic
	References

