Synchronized Pickup and Delivery Problems
with Connecting FIFO Stack

M. Barbato! A. Ceselli N. Facchinetti

OptLab — Dept. of Computer Science
University of Milan
AD-COM Project?

CTW 2020 — 18th Cologne-Twente Workshop on Graphs and
Combinatorial Optimization

September 14-16, 2020

!michele.barbato@unimi.it
’https://ad-com.net/


https://ad-com.net/

Context

@ Research inspired by a collaboration with an industrial partner

@ Automated warehouse characteristics:

(item storage)
o Delivery network (item processing)



Context

@ Research inspired by a collaboration with an industrial partner
o Automated warehouse characteristics:

° (item storage)
o Delivery network (item processing)
o FIFO stack: Pickup network — Delivery network

~_ -
> =
oA TN [ RN I
' \ AN / - AREN TN
- / ~ - / ~
Lo | | !
- __(___‘_ ____(__1_
N SN |- N SN
~ B ~
V! N NN el
AN NIERATAS /
~



Context

@ Research inspired by a collaboration with an industrial partner
o Automated warehouse characteristics:
(item storage)
o Delivery network (item processing)
o FIFO stack: Pickup network — Delivery network
o 2 vehicles of small capacities 4 and k idle at 0
o 1-to-1 pickup and delivery minimizing the routing cost



Context

@ Research inspired by a collaboration with an industrial partner
o Automated warehouse characteristics:
(item storage)
o Delivery network (item processing)
o FIFO stack: Pickup network — Delivery network
o 2 vehicles of small capacities 4 and k idle at 0
o 1-to-1 pickup and delivery minimizing the routing cost



Context

@ Research inspired by a collaboration with an industrial partner
o Automated warehouse characteristics:
(item storage)
o Delivery network (item processing)
o FIFO stack: Pickup network — Delivery network
o 2 vehicles of small capacities 4 and k idle at 0
o 1-to-1 pickup and delivery minimizing the routing cost



Context

@ Research inspired by a collaboration with an industrial partner
o Automated warehouse characteristics:
(item storage)
o Delivery network (item processing)
o FIFO stack: Pickup network — Delivery network
o 2 vehicles of small capacities 4 and k idle at 0
o 1-to-1 pickup and delivery minimizing the routing cost



Context

@ Research inspired by a collaboration with an industrial partner
o Automated warehouse characteristics:
(item storage)
o Delivery network (item processing)
o FIFO stack: Pickup network — Delivery network
o 2 vehicles of small capacities 4 and k idle at 0
o 1-to-1 pickup and delivery minimizing the routing cost



Context

@ Research inspired by a collaboration with an industrial partner
o Automated warehouse characteristics:
(item storage)
o Delivery network (item processing)
o FIFO stack: Pickup network — Delivery network
o 2 vehicles of small capacities 4 and k idle at 0
o 1-to-1 pickup and delivery minimizing the routing cost



Context

@ Research inspired by a collaboration with an industrial partner
o Automated warehouse characteristics:
(item storage)
o Delivery network (item processing)
o FIFO stack: Pickup network — Delivery network
o 2 vehicles of small capacities 4 and k idle at 0
o 1-to-1 pickup and delivery minimizing the routing cost

:k2:3
QD\ /@ -\\ -
I e ! [ /\/’(\/ [N
A P AN AN
- N ] - N "~
O BE B @
! N - N N



Context

@ Research inspired by a collaboration with an industrial partner
o Automated warehouse characteristics:
(item storage)
o Delivery network (item processing)
o FIFO stack: Pickup network — Delivery network
o 2 vehicles of small capacities 4 and k idle at 0
o 1-to-1 pickup and delivery minimizing the routing cost



Context

@ Research inspired by a collaboration with an industrial partner
o Automated warehouse characteristics:
(item storage)
o Delivery network (item processing)
o FIFO stack: Pickup network — Delivery network
o 2 vehicles of small capacities 4 and k idle at 0
o 1-to-1 pickup and delivery minimizing the routing cost



Context

@ Research inspired by a collaboration with an industrial partner
o Automated warehouse characteristics:
(item storage)
o Delivery network (item processing)
o FIFO stack: Pickup network — Delivery network
o 2 vehicles of small capacities 4 and k idle at 0
o 1-to-1 pickup and delivery minimizing the routing cost



Context

@ Research inspired by a collaboration with an industrial partner
o Automated warehouse characteristics:
(item storage)
o Delivery network (item processing)
o FIFO stack: Pickup network — Delivery network
o 2 vehicles of small capacities 4 and k idle at 0
o 1-to-1 pickup and delivery minimizing the routing cost

:k2:3
; /@ ‘:\ P
\ \
AN { ! —) TNy
/ ‘/’\ 7 / - RN
7 N/ I “ N/ "
I A ! _\__/_< -
~ \ s \ v
I~/ N I~ \ - ’
I I
I

# \ .
/
\ ~

& ® ® ©



Context

@ Research inspired by a collaboration with an industrial partner
o Automated warehouse characteristics:

(item storage)
Delivery network (item processing)
FIFO stack: Pickup network — Delivery network
2 vehicles of small capacities «; and k, idle at 0
1-to-1 pickup and delivery minimizing the routing cost




Context

@ Research inspired by a collaboration with an industrial partner
o Automated warehouse characteristics:

(item storage)
Delivery network (item processing)
FIFO stack: Pickup network — Delivery network
2 vehicles of small capacities «; and k, idle at 0
1-to-1 pickup and delivery minimizing the routing cost




Notation and Definitions

Basic data
e G = (V, A) complete digraph
o cl,c®> A— R, functions

@ ki, k> vehicle capacities



Notation and Definitions

Basic data
e G = (V, A) complete digraph
o cl,c®> A— R, functions

@ ki, k> vehicle capacities
Definitions

° D! = (G,c')

e delivery network: D? = (G, c?)



Notation and Definitions

Basic data
e G = (V, A) complete digraph
o cl,c®> A— R, functions

@ ki, k> vehicle capacities
Definitions
° D! = (G,c')
e delivery network: D? = (G, c?)
o trip: t = (vi, Vo, ..., vk) simple directed cycle (from/to 0)



Notation and Definitions

Basic data
e G = (V, A) complete digraph
o cl,c®> A— R, functions

@ ki, k> vehicle capacities
Definitions
° D! = (G,c')
e delivery network: D? = (G, c?)
o trip: t = (vi, Vo, ..., vk) simple directed cycle (from/to 0)
o vi#Oforallj=1,2,...,k



Notation and Definitions

Basic data
e G = (V, A) complete digraph
o cl,c®> A— R, functions

@ ki, k> vehicle capacities
Definitions
° D! = (G,c')
e delivery network: D? = (G, c?)
o trip: t = (vi, Vo, ..., vk) simple directed cycle (from/to 0)
o vi#Oforallj=1,2,...,k
o for a trip in D":
o feasibility: k < k;
o trip cost: ¢/(t) = ¢'(0, v1) + Zf:_ll ¢ (viy viy1) + €' (v, 0)



A General Problem Definition

A Synchronized Pickup and Delivery Problem with FIFO stack
(SPDP-FS) is

min  c!(P)+c*(D)
s. t.
P= (p1,p2y ... Pe) with p; feasible trips partitioning V' \ 0
D= (d\,d>,...,dn)  with d; feasible trips partitioning V \ 0
(P,D) satisfies the FIFO
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The No-Permutation Variant

No-Permutation Description:
@ items on the FIFO stack respecting the
e items delivered in the order on the FIFO stack
Definition
Let T = (&1, t, ..., te) be a sequence of
The T-sequence is the sequence of vertices in V' \ 0 in the order they
appearin T.
No-Permutation SPDP-FS
e (P, D) solution < = D-sequence

Example

((2 ) (1,5,4))
((2

1,64 @@ @ @
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@ Each pickup trip unloads a batch of items on the FIFO stack
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@ The pickup and delivery batches satisfy the FIFO

Pickup-Permutation Description
o Each pickup trip unloads a batch of items on the FIFO stack
@ The order inside pickup batches is arbitrary
@ Items delivered in the order on the FIFO stack

Delivery-Permutation Description
@ Items on the FIFO stack respecting the pickup order
@ Each delivery trip loads a batch of items from the FIFO stack

@ The order inside delivery batches is arbitrary
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The No-Overlap Requirement

@ Each delivery batch is contained in one pickup batch
@ The other requirements stay valid

Definition

Let T = (&1, to, ..., tx) be a sequence of trips

We write V/(t;) to indicate the vertices in t;

SPDP-FS with No-Overlap
(P, D) satisfies the requirement if for all i there is j s.t. V(d;) C V(pj)

Example

=((2,3),(1,5,4
—((3 2),(4




Variant Hierarchy

PICKUPfPERML"[‘ATION}

PERMUTATION

[PICKUP—PERMUTATION,NO—OVERLAP] S~

[DELIVERY-PERMUTATION,NO-OVERLAP]

[1\' 0-PERMUTATION,NO- OVERLAP]
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Complexity Results

Proposition. All SPDP-FS variants with No-QOverlap requirement are
solvable in polynomial time if ki, ko € {1,2}.
Proof. (Sketch)
@ Preprocess all ways to pickup and deliver item singletons and item
pairs and keep the best ones
@ Choose the item singletons and pairs using a perfect matching

Proposition. All SPDP-FS variants are NP-hard if k; and k; are part

of the input.
Proof. (Sketch)

o Let n = |V \ 0|, and choose k; = n, ko = 1 and c? = 0.

o If ¢! is metric then SPDP-FS solves the on
D = (G,ct)
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No-Permutation Variants: the Splitting Subproblem
A solution to the SPDP-FS is described by

@ P pickup trip sequence
o D delivery trip sequence
e F item ordering on the FIFO stack

In No-Permutation variants F partially describes P and D

Definition
Sequences obtained from F as before are said

Splitting subproblem. Given F find its pair of splittings (P, D)
minimizing c!(P) + ¢?(D).

Relevance: embedding in a 2-opt heuristic (see later)
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o (i,j): first i items picked-up and first j delivered (i > j)
@ (j,j) — (i,j): extend P with trip (j + 1,5 +2,...,1i)
o (i,ji1) — (i,j»): extend D with trip (j1 + 1,51 +2...,j2)

@ costs in polynomial time
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Polynomial Algorithm for the Splitting Subproblem
No-Permutation,Overlap case.
Assume (wlog) F = (1,2,...,n)
Approach: (0,0) — (n, n) shortest-path in A/

ki =3 P =((1),(2,3))
1 ky =2 D = ((1,2),(3))




No-Permutation Variants: A 2-Opt Heuristic

No-Permutation 2-Opt Heuristic
1) F: TSP solution on D = (G, c) with c(e) = c!(e) + c?(e)
2)
3) Generate the 2-opt neighborhood of F, scored by
4) Choose the best neighbor and repeat 3) until no improvement

(P, D): optimal splittings of F
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Computational Results: 2-Opt Performance

Instance Set:

@ 11440 instances adapted from the Double TSP
with Multiple Stacks [PMO09]

Specs:
@ 1st TSP solved with
CONCORDE [CONO3]

@ 3 classes of 10 instances with 33, 66, 132 items @ C++ compiled with

respectively gec 7.2 03
o Classes 33/66: e OS: Linux
ki € {3,6,...33/66
ko {3’6’ k/ } @ CPU: Intel 17-3630QM
2 € { 9 Ug ey 1}
o Class 132: ©2.40GHz

ki € {6,12,...,132}
k2€{6’121"'7k1}
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log (CPU time)
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Computational Results: 2-Opt Quality

e IS: initial solution cost (1st splitting subproblem)
e F'S: final solution cost (end of 2-opt heuristic)
o LB: TSP(D')+TSP(D?)

Variant Size | (IS—-FS)/IS (FS—-LB)/LB
No-OVERLAP 33 0.84% 47.14%
66 0.61% 54.27%

132 0.41% 59.65%

OVERLAP 33 0.76% 45.09%
66 0.52% 53.00%

132 0.33% 59.07%

Table: Quality of heuristics and bounds. Results in average on all instances of
the reported classes.



Conclusions and Perspectives

@ 8 variants of the SPDP-FS formally characterized

o Work in progress: model the variants as MILPs
e Open: consider other objectives (e.g., completion time)

@ Preliminary complexity results with fixed and non-fixed capacities
o Open: extend the results to other capacity values and other variants
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edge (v/, v"/)=trips to collect and delivery v

c[v’, v"’"] =cost to collect and deliver v

edge (v/, w’)=best trips to collect and deliver v, w
c[v’, w'] =min-cost to collect and deliver v, w




Appendix — Fixed Capacity Complexity
Proposition. The SPDP-FS variants
e Permutation,No-Overlap
@ No-Permutation,No-Overlap

are solvable in polynomial time if kq, ko € {1, 2}.
Proof.

@ 2 copies v/, v forallv € V\ 0

edge (v/, v"/)=trips to collect and delivery v

c[v’, v"’"] =cost to collect and deliver v
edge (v/, w’)=best trips to collect and deliver v, w
c[v’, w'] =min-cost to collect and deliver v, w

2 Solution=Perfect Matching

(“ P=((2,4),(3),(1,5)

= ((4),(2),(3),(5,1))
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Appendix — Permutation Variants Definitions

Definition
Let T = (&1, to, ..., tx) be a sequence of trips
We write v <7 w whenever v € tjand w € tj forsome 1 < i < j < k

Otherwise we write v A1 w

Example
T =((1,3,5),(4,2)). Then:

el <14
01741'3
2415



Appendix — Permutation Variants Definitions

Definition

Let T = (&1, to, ..., tx) be a sequence of trips

We write v <7 w whenever v € tjand w € tj forsome 1 < i < j < k
Otherwise we write v A1 w

PERMUTATION. The pair (P, D) is a feasible solution if and only for
every v,w € V' \ {0} such that v <p w it also holds

w £p V.
DELIVERY PERMUTATION. The pair (P, D) is a feasible solution if and
only if:
o forevery j=1,2,...,m, V(d) is a set of elements

which are consecutive in the P-sequence;
e for every v,w € V \ {0}, if v <p w then v precedes
w in the P-sequence.

PICKUP PERMUTATION. The pair (P, D) is a feasible solution for every
v,w € V\ {0} such that v <p w we also have that v
precedes w in the D-sequence.
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Appendix — Pickup vs. Delivery Permutation

Let kt = ko =3 and n=5.

@ Pickup Permutation OK, Delivery Permutation NOT:
o P=((1,5,4),(2,3))
o D= ((1)7 (5747 3)7 (2))
o F=(1,5,4,3,2) if pickup permutes
o F=(1,5,4,2,3) if pickup cannot permute

o Delivery Permutation OK, Pickup Permutation NOT:
o P=((1,5,4),(2,3))
o D= ((1)’ (57 274)7 (3))
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