Synchronized Pickup and Delivery Problems with Connecting FIFO Stack

<u>M. Barbato¹</u> A. Ceselli N. Facchinetti

OptLab – Dept. of Computer Science University of Milan AD-COM Project²

CTW 2020 – 18th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

September 14-16, 2020

¹michele.barbato@unimi.it

²https://ad-com.net/

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
 - Pickup network (item storage)
 - Delivery network (item processing)

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
 - Pickup network (item storage)
 - Delivery network (item processing)
 - FIFO stack: Pickup network \rightarrow Delivery network

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
 - Pickup network (item storage)
 - Delivery network (item processing)
 - FIFO stack: Pickup network \rightarrow Delivery network
 - 2 vehicles of small capacities k_1 and k_2 idle at 0
 - 1-to-1 pickup and delivery minimizing the routing cost

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
 - Pickup network (item storage)
 - Delivery network (item processing)
 - FIFO stack: Pickup network \rightarrow Delivery network
 - 2 vehicles of small capacities k_1 and k_2 idle at 0
 - 1-to-1 pickup and delivery minimizing the routing cost

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
 - Pickup network (item storage)
 - Delivery network (item processing)
 - FIFO stack: Pickup network \rightarrow Delivery network
 - 2 vehicles of small capacities k_1 and k_2 idle at 0
 - 1-to-1 pickup and delivery minimizing the routing cost

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
 - Pickup network (item storage)
 - Delivery network (item processing)
 - FIFO stack: Pickup network \rightarrow Delivery network
 - 2 vehicles of small capacities k_1 and k_2 idle at 0
 - 1-to-1 pickup and delivery minimizing the routing cost

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
 - Pickup network (item storage)
 - Delivery network (item processing)
 - FIFO stack: Pickup network \rightarrow Delivery network
 - 2 vehicles of small capacities k_1 and k_2 idle at 0
 - 1-to-1 pickup and delivery minimizing the routing cost

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
 - Pickup network (item storage)
 - Delivery network (item processing)
 - FIFO stack: Pickup network \rightarrow Delivery network
 - 2 vehicles of small capacities k_1 and k_2 idle at 0
 - 1-to-1 pickup and delivery minimizing the routing cost

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
 - Pickup network (item storage)
 - Delivery network (item processing)
 - FIFO stack: Pickup network \rightarrow Delivery network
 - 2 vehicles of small capacities k_1 and k_2 idle at 0
 - 1-to-1 pickup and delivery minimizing the routing cost

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
 - Pickup network (item storage)
 - Delivery network (item processing)
 - FIFO stack: Pickup network \rightarrow Delivery network
 - 2 vehicles of small capacities k_1 and k_2 idle at 0
 - 1-to-1 pickup and delivery minimizing the routing cost

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
 - Pickup network (item storage)
 - Delivery network (item processing)
 - FIFO stack: Pickup network \rightarrow Delivery network
 - 2 vehicles of small capacities k_1 and k_2 idle at 0
 - 1-to-1 pickup and delivery minimizing the routing cost

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
 - Pickup network (item storage)
 - Delivery network (item processing)
 - **FIFO** stack: Pickup network \rightarrow Delivery network
 - 2 vehicles of small capacities k_1 and k_2 idle at 0
 - 1-to-1 pickup and delivery minimizing the routing cost

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
 - Pickup network (item storage)
 - Delivery network (item processing)
 - **FIFO** stack: Pickup network \rightarrow Delivery network
 - 2 vehicles of small capacities k_1 and k_2 idle at 0
 - 1-to-1 pickup and delivery minimizing the routing cost

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
 - Pickup network (item storage)
 - Delivery network (item processing)
 - **FIFO** stack: Pickup network \rightarrow Delivery network
 - 2 vehicles of small capacities k_1 and k_2 idle at 0
 - 1-to-1 pickup and delivery minimizing the routing cost

- Research inspired by a collaboration with an industrial partner
- Automated warehouse characteristics:
 - Pickup network (item storage)
 - Delivery network (item processing)
 - **FIFO** stack: Pickup network \rightarrow Delivery network
 - 2 vehicles of small capacities k_1 and k_2 idle at 0
 - 1-to-1 pickup and delivery minimizing the routing cost

Basic data

- $\pmb{G} = (\pmb{V}, \pmb{A})$ complete digraph
- $\boldsymbol{c}^1, \boldsymbol{c}^2 \colon \boldsymbol{A}
 ightarrow \mathbb{R}_+$ cost functions
- **k**₁, **k**₂ vehicle capacities

Basic data

- $\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{A})$ complete digraph
- $\boldsymbol{c}^1, \boldsymbol{c}^2 \colon \boldsymbol{A} o \mathbb{R}_+$ cost functions
- **k**₁, **k**₂ vehicle capacities

- pickup network: $D^1 = (G, c^1)$
- delivery network: $D^2 = (G, c^2)$

Basic data

- $\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{A})$ complete digraph
- $\boldsymbol{c}^1, \boldsymbol{c}^2 \colon \boldsymbol{A} o \mathbb{R}_+$ cost functions
- **k**₁, **k**₂ vehicle capacities

- pickup network: $D^1 = (G, c^1)$
- delivery network: $D^2 = (G, c^2)$
- trip: $\boldsymbol{t} = (\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k)$ simple directed cycle (from/to 0)

Basic data

- $\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{A})$ complete digraph
- $\boldsymbol{c}^1, \boldsymbol{c}^2 \colon \boldsymbol{A} o \mathbb{R}_+$ cost functions
- **k**₁, **k**₂ vehicle capacities

- pickup network: $D^1 = (G, c^1)$
- delivery network: $D^2 = (G, c^2)$
- trip: $\boldsymbol{t} = (\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k)$ simple directed cycle (from/to 0)
 - $v_j \neq 0$ for all $j = 1, 2, \dots, k$

Basic data

- $\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{A})$ complete digraph
- $\boldsymbol{c}^1, \boldsymbol{c}^2 \colon \boldsymbol{A}
 ightarrow \mathbb{R}_+$ cost functions
- **k**₁, **k**₂ vehicle capacities

- pickup network: $D^1 = (G, c^1)$
- delivery network: $D^2 = (G, c^2)$
- trip: $t = (v_1, v_2, \dots, v_k)$ simple directed cycle (from/to 0)
 - $v_j \neq 0$ for all $j = 1, 2, \dots, k$
 - for a trip in **D**ⁱ:
 - feasibility: $k \leq k_i$
 - trip cost: $c^{i}(t) = c^{i}(0, v_{1}) + \sum_{i=1}^{k-1} c^{i}(v_{i}, v_{i+1}) + c^{i}(v_{k}, 0)$

A Synchronized Pickup and Delivery Problem with FIFO stack (SPDP-FS) is

min
$$c^1(P)+c^2(D)$$

s. t.
 $P = (p_1, p_2, \dots, p_\ell)$ with p_i feasible trips partitioning V
 $D = (d_1, d_2, \dots, d_m)$ with d_j feasible trips partitioning V
 (P,D) satisfies the FIFO

\0 \0

No-Permutation Description:

- items on the FIFO stack respecting the pickup order
- items delivered in the order on the FIFO stack

No-Permutation Description:

- items on the FIFO stack respecting the pickup order
- items delivered in the order on the FIFO stack

Definition

Let $T = (t_1, t_2, \ldots, t_\ell)$ be a sequence of trips.

The **T**-sequence is the sequence of vertices in $V \setminus 0$ in the order they appear in **T**.

No-Permutation Description:

- items on the FIFO stack respecting the pickup order
- items delivered in the order on the FIFO stack

Definition

Let $T = (t_1, t_2, ..., t_\ell)$ be a sequence of trips. The *T*-sequence is the sequence of vertices in $V \setminus 0$ in the order they appear in *T*.

Example

- T = ((2,3), (1,5,4))
- *T*-sequence= (2, 3, 1, 5, 4)

No-Permutation Description:

- items on the FIFO stack respecting the pickup order
- items delivered in the order on the FIFO stack

Definition

Let $T = (t_1, t_2, \ldots, t_\ell)$ be a sequence of trips.

The **T**-sequence is the sequence of vertices in $V \setminus 0$ in the order they appear in **T**.

No-Permutation SPDP-FS

• (P, D) solution \Leftrightarrow *P*-sequence \equiv *D*-sequence

No-Permutation Description:

- items on the FIFO stack respecting the pickup order
- items delivered in the order on the FIFO stack

Definition

Let $T = (t_1, t_2, \ldots, t_\ell)$ be a sequence of trips.

The **T**-sequence is the sequence of vertices in $V \setminus 0$ in the order they appear in **T**.

No-Permutation SPDP-FS

• (*P*, *D*) solution ⇔ *P*-sequence ≡ *D*-sequence Example

$$P = ((2,3), (1,5,4))$$

$$D = ((2,3,1), (5,4))$$

$$2 - 3$$

$$4 - 5 - 1$$

$$2 - 3$$

$$4 - 5 - 1$$

Permutation Description

- Each pickup trip unloads a batch of items on the FIFO stack
- Each delivery trip loads a batch of items from the FIFO stack
- The order inside batches is arbitrary
- The pickup and delivery batches satisfy the FIFO

Permutation Description

- Each pickup trip unloads a batch of items on the FIFO stack
- Each delivery trip loads a batch of items from the FIFO stack
- The order inside batches is arbitrary
- The pickup and delivery batches satisfy the FIFO

Pickup-Permutation Description

- Each pickup trip unloads a batch of items on the FIFO stack
- The order inside pickup batches is arbitrary
- Items delivered in the order on the FIFO stack

Permutation Description

- Each pickup trip unloads a batch of items on the FIFO stack
- Each delivery trip loads a batch of items from the FIFO stack
- The order inside batches is arbitrary
- The pickup and delivery batches satisfy the FIFO

Pickup-Permutation Description

- Each pickup trip unloads a batch of items on the FIFO stack
- The order inside pickup batches is arbitrary
- Items delivered in the order on the FIFO stack

Delivery-Permutation Description

- Items on the FIFO stack respecting the pickup order
- Each delivery trip loads a batch of items from the FIFO stack
- The order inside delivery batches is arbitrary

The No-Overlap Requirement

No-Overlap Description

- Each delivery batch is contained in one pickup batch
- The other requirements stay valid

The No-Overlap Requirement

No-Overlap Description

- Each delivery batch is contained in one pickup batch
- The other requirements stay valid

Definition

Let $\mathbf{T} = (\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_k)$ be a sequence of trips We write $\mathbf{V}(\mathbf{t}_i)$ to indicate the vertices in \mathbf{t}_i

The No-Overlap Requirement

No-Overlap Description

- Each delivery batch is contained in one pickup batch
- The other requirements stay valid

Definition

Let $T = (t_1, t_2, \dots, t_k)$ be a sequence of trips We write $V(t_i)$ to indicate the vertices in t_i

SPDP-FS with No-Overlap

(P, D) satisfies the requirement if for all i there is j s.t. $V(d_i) \subseteq V(p_j)$

Example

Variant Hierarchy

Complexity Results

Proposition. All **SPDP-FS** variants with **No-Overlap** requirement are solvable in **polynomial time** if $k_1, k_2 \in \{1, 2\}$.

Complexity Results

Proposition. All **SPDP-FS** variants with **No-Overlap** requirement are solvable in **polynomial time** if $k_1, k_2 \in \{1, 2\}$. **Proof.** (Sketch)

- Preprocess all ways to pickup and deliver item singletons and item pairs and keep the best ones
- Choose the item singletons and pairs using a perfect matching
Complexity Results

Proposition. All **SPDP-FS** variants with **No-Overlap** requirement are solvable in **polynomial time** if $k_1, k_2 \in \{1, 2\}$. **Proof.** (Sketch)

- Preprocess all ways to pickup and deliver item singletons and item pairs and keep the best ones
- Choose the item singletons and pairs using a perfect matching

Proposition. All SPDP-FS variants are NP-hard if k_1 and k_2 are part of the input.

Complexity Results

Proposition. All **SPDP-FS** variants with **No-Overlap** requirement are solvable in **polynomial time** if $k_1, k_2 \in \{1, 2\}$. **Proof.** (Sketch)

- Preprocess all ways to pickup and deliver item singletons and item pairs and keep the best ones
- Choose the item singletons and pairs using a perfect matching

Proposition. All SPDP-FS variants are NP-hard if k_1 and k_2 are part of the input.

Proof. (Sketch)

- Let $\mathbf{n} = |\mathbf{V} \setminus 0|$, and choose $\mathbf{k}_1 = \mathbf{n}$, $\mathbf{k}_2 = 1$ and $\mathbf{c}^2 \equiv 0$.
- If c¹ is metric then SPDP-FS solves the Euclidean-TSP on
 D = (G, c¹)

- A solution to the SPDP-FS is completely described by
 - P pickup trip sequence
 - **D** delivery trip sequence
 - F item ordering on the FIFO stack

- A solution to the SPDP-FS is completely described by
 - P pickup trip sequence
 - D delivery trip sequence
 - F item ordering on the FIFO stack

In No-Permutation variants F partially describes P and D

 $F = (1 \ 2 \ 3 \ 4 \ 5)$

- A solution to the SPDP-FS is completely described by
 - P pickup trip sequence
 - D delivery trip sequence
 - F item ordering on the FIFO stack

In No-Permutation variants F partially describes P and D

 $F = (1 \ 2|3 \ 4|5)$ P = ((1, 2), (3, 4), (5))

- A solution to the SPDP-FS is completely described by
 - P pickup trip sequence
 - D delivery trip sequence
 - F item ordering on the FIFO stack

In No-Permutation variants F partially describes P and D

 $F = (1 \ 2 \ 3|4 \ 5)$ P = ((1, 2), (3, 4), (5))D = ((1, 2, 3), (4, 5))

- A solution to the SPDP-FS is completely described by
 - P pickup trip sequence
 - **D** delivery trip sequence
 - F item ordering on the FIFO stack

In No-Permutation variants F partially describes P and D

Definition

Sequences obtained from *F* as before are said splitting

A solution to the SPDP-FS is completely described by

- P pickup trip sequence
- D delivery trip sequence
- F item ordering on the FIFO stack

In No-Permutation variants F partially describes P and D

Definition

Sequences obtained from *F* as before are said splitting

Splitting subproblem. Given **F** find its pair of splittings (P, D) minimizing $c^1(P) + c^2(D)$.

A solution to the SPDP-FS is completely described by

- P pickup trip sequence
- D delivery trip sequence
- F item ordering on the FIFO stack

In No-Permutation variants F partially describes P and D

Definition

Sequences obtained from *F* as before are said splitting

Splitting subproblem. Given **F** find its pair of splittings (P, D) minimizing $c^1(P) + c^2(D)$.

Relevance: embedding in a 2-opt heuristic (see later)

No-Permutation, No-Overlap case.

Assume (wlog) F = (1, 2, ..., n)

No-Permutation, No-Overlap case.

Assume (wlog) F = (1, 2, ..., n)

Approach: (0,0) - (n, n) shortest-path in \mathcal{N}

• (i, j): first *i* items picked-up and first *j* delivered $(i \ge j)$

No-Permutation, No-Overlap case.

Assume (wlog) F = (1, 2, ..., n)

Approach: (0,0) - (n, n) shortest-path in \mathcal{N}

(i,j): first i items picked-up and first j delivered (i ≥ j)
(j,j) → (i,j): extend P with trip (j + 1, j + 2,...,i)

No-Permutation, No-Overlap case.

Assume (wlog) F = (1, 2, ..., n)

- (i, j): first *i* items picked-up and first *j* delivered $(i \ge j)$
- $(j,j) \rightarrow (i,j)$: extend **P** with trip (j + 1, j + 2, ..., i)
- $(i, j_1) \rightarrow (i, j_2)$: extend **D** with trip $(j_1 + 1, j_1 + 2..., j_2)$

No-Permutation, No-Overlap case.

Assume (wlog) F = (1, 2, ..., n)

- (i, j): first i items picked-up and first j delivered $(i \ge j)$
- $(j,j) \rightarrow (i,j)$: extend **P** with trip (j + 1, j + 2, ..., i)
- $(i, j_1) \rightarrow (i, j_2)$: extend **D** with trip $(j_1 + 1, j_1 + 2..., j_2)$
- costs preprocessed in polynomial time

No-Permutation, Overlap case.

Assume (wlog) F = (1, 2, ..., n)

No-Permutation, Overlap case.

Assume (wlog) F = (1, 2, ..., n)

No-Permutation 2-Opt Heuristic

- 1) F: TSP solution on D = (G, c) with $c(e) = c^1(e) + c^2(e)$
- 2) (P, D): optimal splittings of F
- 3) Generate the 2-opt neighborhood of *F*, scored by splitting value
- 4) Choose the best neighbor and repeat 3) until no improvement

Computational Results: 2-Opt Performance

Instance Set:

- 11440 instances adapted from the Double TSP with Multiple Stacks [PM09]
- 3 classes of 10 instances with 33, 66, 132 items respectively
 - Classes 33/66: $k_1 \in \{3, 6, \dots, 33/66\}$ $k_2 \in \{3, 6, \dots, k_1\}$ • Class 132: $k_1 \in \{6, 12, \dots, 132\}$ $k_2 \in \{6, 12, \dots, k_1\}$

Computational Results: 2-Opt Performance

Instance Set:

- 11440 instances adapted from the Double TSP with Multiple Stacks [PM09]
- 3 classes of 10 instances with 33, 66, 132 items respectively

• Classes 33/66:

$$k_1 \in \{3, 6, \dots, 33/66\}$$

 $k_2 \in \{3, 6, \dots, k_1\}$

- Class 132:
 - $k_1 \in \{6, 12, \dots, 132\}$ $k_2 \in \{6, 12, \dots, k_1\}$

Specs:

- 1st TSP solved with CONCORDE [CON03]
- C++ compiled with gcc 7.2 -03
- OS: Linux
- CPU: Intel i7-3630QM @2.40GHz

Computational Results: 2-Opt Performance

Instance Set:

- 11440 instances adapted from the Double TSP with Multiple Stacks [PM09]
- 3 classes of 10 instances with 33, 66, 132 items respectively

• Classes 33/66: $k_1 \in \{3, 6, \dots, 33/66\}$ $k_2 \in \{3, 6, \dots, k_1\}$

- Class 132:
 - $k_1 \in \{6, 12, \dots, 132\}$ $k_2 \in \{6, 12, \dots, k_1\}$

Specs:

- 1st TSP solved with CONCORDE [CON03]
- C++ compiled with gcc 7.2 -03
- OS: Linux
- CPU: Intel i7-3630QM @2.40GHz

Computational Results: 2-Opt Quality

- IS: initial solution cost (1st splitting subproblem)
- FS: final solution cost (end of 2-opt heuristic)
- LB: **TSP**(**D**¹)+**TSP**(**D**²)

Variant	Size	(IS - FS)/IS	(FS - LB)/LB
NO-OVERLAP	33	0.84%	47.14%
	66	0.61%	54.27%
	132	0.41%	59.65%
Overlap	33	0.76%	45.09%
	66	0.52%	53.00%
	132	0.33%	59.07%

Table: Quality of heuristics and bounds. Results in average on all instances of the reported classes.

Conclusions and Perspectives

- 8 variants of the SPDP-FS formally characterized
 - Work in progress: model the variants as MILPs
 - **Open:** consider other objectives (*e.g.*, completion time)
- Preliminary complexity results with fixed and non-fixed capacities
 - Open: extend the results to other capacity values and other variants

- [CON03] CONCORDE. D. L. Applegate, R. E. Bixby, V. Chvatal and W. J. Cook, 2003. http://www.math.uwaterloo.ca/tsp/concorde.html.
 - [PM09] Hanne L Petersen and Oli BG Madsen. The double travelling salesman problem with multiple stacks-formulation and heuristic solution approaches. *European Journal of Operational Research*, 198(1):139–147, 2009.

Proposition. The SPDP-FS variants

- Permutation, No-Overlap
- No-Permutation, No-Overlap

are solvable in **polynomial time** if $k_1, k_2 \in \{1, 2\}$.

Proposition. The SPDP-FS variants

- Permutation, No-Overlap
- No-Permutation, No-Overlap

are solvable in **polynomial time** if $\mathbf{k}_1, \mathbf{k}_2 \in \{1, 2\}$. **Proof.**

• 2 copies $\boldsymbol{v'}, \boldsymbol{v''}$ for all $\boldsymbol{v} \in \boldsymbol{V} \setminus 0$

Proposition. The SPDP-FS variants

- Permutation, No-Overlap
- No-Permutation, No-Overlap

are solvable in **polynomial time** if $\mathbf{k}_1, \mathbf{k}_2 \in \{1, 2\}$. **Proof.**

- 2 copies $\mathbf{v'}, \mathbf{v''}$ for all $\mathbf{v} \in \mathbf{V} \setminus 0$
- edge $(\mathbf{v'}, \mathbf{v''}) =$ trips to collect and delivery \mathbf{v}

• c[v', v''] = cost to collect and deliver v

Proposition. The SPDP-FS variants

- Permutation, No-Overlap
- No-Permutation, No-Overlap

- 2 copies $\boldsymbol{v}', \boldsymbol{v}''$ for all $\boldsymbol{v} \in \boldsymbol{V} \setminus 0$
- edge $(\mathbf{v'}, \mathbf{v''}) =$ trips to collect and delivery \mathbf{v}
- c[v', v''] = cost to collect and deliver v
- edge (v', w')=best trips to collect and deliver v, w
- c[v', w'] =min-cost to collect and deliver v, w

Proposition. The SPDP-FS variants

- Permutation, No-Overlap
- No-Permutation, No-Overlap

- 2 copies $\boldsymbol{v}', \boldsymbol{v}''$ for all $\boldsymbol{v} \in \boldsymbol{V} \setminus 0$
- edge $(\mathbf{v'}, \mathbf{v''}) =$ trips to collect and delivery \mathbf{v}
- c[v', v''] = cost to collect and deliver v
- edge (v', w')=best trips to collect and deliver v, w
- c[v', w'] =min-cost to collect and deliver v, w

Proposition. The SPDP-FS variants

- Permutation, No-Overlap
- No-Permutation, No-Overlap

- 2 copies $\boldsymbol{v}', \boldsymbol{v}''$ for all $\boldsymbol{v} \in \boldsymbol{V} \setminus 0$
- edge $(\mathbf{v'}, \mathbf{v''}) =$ trips to collect and delivery \mathbf{v}
- c[v', v''] = cost to collect and deliver v
- edge (v', w')=best trips to collect and deliver v, w
- c[v', w'] =min-cost to collect and deliver v, w
- *c*[*v*", *w*"] = 0

Proposition. The SPDP-FS variants

- Permutation, No-Overlap
- No-Permutation, No-Overlap

- 2 copies $\boldsymbol{v}', \boldsymbol{v}''$ for all $\boldsymbol{v} \in \boldsymbol{V} \setminus 0$
- edge $(\mathbf{v'}, \mathbf{v''}) =$ trips to collect and delivery \mathbf{v}
- c[v', v''] = cost to collect and deliver v
- edge (v', w')=best trips to collect and deliver v, w
- c[v', w'] =min-cost to collect and deliver v, w
- *c*[*v*", *w*"] = 0

Appendix — Permutation Variants Definitions

Definition

Let $T = (t_1, t_2, ..., t_k)$ be a sequence of **trips** We write $v \prec_T w$ whenever $v \in t_i$ and $w \in t_j$ for some $1 \le i < j \le k$ Otherwise we write $v \not\prec_T w$

Appendix — Permutation Variants Definitions

Definition

Let $T = (t_1, t_2, ..., t_k)$ be a sequence of **trips** We write $v \prec_T w$ whenever $v \in t_i$ and $w \in t_j$ for some $1 \le i < j \le k$ Otherwise we write $v \not\prec_T w$

Example

- T = ((1, 3, 5), (4, 2)). Then:
 - $1 \prec_{T} 4$
 - 1 ⊀т 3
 - 2 ⊀т 5

Appendix — Permutation Variants Definitions

Definition

Let $T = (t_1, t_2, ..., t_k)$ be a sequence of **trips** We write $v \prec_T w$ whenever $v \in t_i$ and $w \in t_j$ for some $1 \le i < j \le k$ Otherwise we write $v \not\prec_T w$

PERMUTATION. The pair (P, D) is a feasible solution if and only for every $v, w \in V \setminus \{0\}$ such that $v \prec_P w$ it also holds $w \not\prec_D v$.

DELIVERY PERMUTATION. The pair (P, D) is a feasible solution if and only if:

- for every j = 1, 2, ..., m, $V(d_j)$ is a set of elements which are consecutive in the *P*-sequence;
- for every $v, w \in V \setminus \{0\}$, if $v \prec_D w$ then v precedes w in the *P*-sequence.

PICKUP PERMUTATION. The pair (P, D) is a feasible solution for every $v, w \in V \setminus \{0\}$ such that $v \prec_P w$ we also have that v precedes w in the *D*-sequence.

Appendix — Pickup vs. Delivery Permutation

Let $k_1 = k_2 = 3$ and n = 5.

• Pickup Permutation OK, Delivery Permutation NOT:

•
$$P = ((1, 5, 4), (2, 3))$$

•
$$D = ((1), (5, 4, 3), (2))$$

Appendix — Pickup vs. Delivery Permutation

Let $k_1 = k_2 = 3$ and n = 5.

• Pickup Permutation OK, Delivery Permutation NOT:

•
$$P = ((1, 5, 4), (2, 3))$$

• *F* = (1, 5, 4, 3, 2) if pickup permutes

Appendix — Pickup vs. Delivery Permutation

Let $k_1 = k_2 = 3$ and n = 5.

• Pickup Permutation OK, Delivery Permutation NOT:

- *F* = (1, 5, 4, 3, 2) if pickup permutes
- F = (1, 5, 4, 2, 3) if pickup cannot permute
Appendix — Pickup vs. Delivery Permutation

Let $k_1 = k_2 = 3$ and n = 5.

- Pickup Permutation OK, Delivery Permutation NOT:
 - P = ((1, 5, 4), (2, 3))
 - D = ((1), (5, 4, 3), (2))
 - F = (1, 5, 4, 3, 2) if pickup permutes
 - F = (1, 5, 4, 2, 3) if pickup cannot permute
- Delivery Permutation OK, Pickup Permutation NOT:

•
$$P = ((1, 5, 4), (2, 3))$$

• D = ((1), (5, 2, 4), (3))