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Distance Geometry problem

DGP

Given a simple undirected graph G = (V,E), a distance function
d : E → R+ and an integer K > 0, the Distance Geometry Problem
(DGP) consists in finding (if possible) a realization x : V → RK such that

∀{u, v} ∈ E : ‖xu − xv‖ = duv.

For an incomplete set of distances:

K = 1, NP-complete (subset sum)

Saxe (1979), NP-Hard for K > 1
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A global optimization problem

min
X ∈RKN

f(X) ≡
∑
{u,v}∈E

(
‖xu − xv‖2 − d2

uv

)2

X∗ is a realization iff f(X∗) = 0.

Proposed approaches:

general-purpose global optimization methods, heuristics

(Moré, Wu, 1997) DGSOL, homotopy continuation method

(Reams et al., 1999) APA, alternating projection

(N. Krislock, H. Wolkowicz, 2010) SDP formulation

(Lavor, Liberti, Maculan, Mucherino, 2012) Discrete formulation
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K-laterative graphs

There exists an order (<) on V ensuring:

1 An initial (K + 1)-clique

2 For each v > K + 1, there are at least K + 1 adjacent predecessors

Geometric build-up (Dong, Wu, J. Global Optim., 26, 2003)

‖xk − x1‖ = dk,1,

‖xk − x2‖ = dk,2,

‖xk − x3‖ = dk,3,

‖xk − x4‖ = dk,4.

Ax = b,

A =

 (x1 − x2)>

(x1 − x3)>

(x1 − x4)>



* coordinates obtained in O(N).
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(K − 1)-laterative graphs

C. Lavor, L. Liberti, N. Maculan, A. Mucherino, Comput. Optim. Appl., 52 (2012)

Figure 1: Three spheres intersect in exactly two points.

know dv−3,v−1, dv−3,v−2, dv−2,v−1. As long as the strict triangular inequality
dv−3,v−1 < dv−3,v−2 +dv−2,v−1 holds, then the intersection can only have either
one or two points, depending on whether the discriminant of a certain quadratic
polynomial in xv is zero or nonzero [4]: we call this the finite sphere intersection
property. Because this discriminant can in general take any value in R+, and a
singleton set has Lebesgue measure zero in R+, the sphere intersection has one
point with probability 0 and two points with probability 1. We remark that
the strict triangular inequality condition can only be checked once the predeces-
sors of v have been embedded; this prevents us from recognizing aprioristically
whether an MDGP instance conforms to this condition or not. We address this
limitation by requiring that all 4-cliques of consecutive vertices are subgraphs of
G. Thus, each 3-(sub)clique Kv

3 = {v−3, v−2, v−1} is used to verify the strict
triangular inequality, and the edges from Kv

3 to v guarantee the finite sphere
intersection property. If we proceed by embedding vertices iteratively this way
we end up with a tree of possibilities where each embedded vertex gives rise
to either one or two new positions for the embedding of the next vertex in the
order. Since the first vertex triplet has only one possible embedding up to trans-
lations and rotations (because E contains a clique on the first four vertices), |X|
is finite with probability 1 [15, 17].

Several existing works exploit the finite sphere intersection property, but
considering four (rather than three, as in our case) spheres [6, 7, 8, 41, 40, 5]; in
general, the non-empty intersection of four spheres in R3 contains exactly one
point: this follows because the system ∀j ∈ {1, 2, 3, 4} ‖xv−j − xv‖2 = d2

v−j,v

can be reduced to a square 3×3 linear system which is nonsingular under simple
geometric regularity conditions. This ensures that the worst-case running time
of an iterative algorithm based on this idea is O(|V |). In [6] G is assumed to
be a clique. In [7] this requirement is weakened: the so-called geometric build-
up algorithm can only find a valid embedding if, for the current vertex, one
can find at least four previously embedded adjacent vertices; depending on the
instance, however, the algorithm in [7] may fail to find a valid embedding even

5

‖xi−1 − xi‖2 = d2
i−1,i

‖xi−2 − xi‖2 = d2
i−2,i

‖xi−3 − xi‖2 = d2
i−3,i

One solution

Two solutions

Assumption. Initial K-clique, ∀v > K there are at least K adjacent
predecessors (whose realization vectors are affine independent).
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Discretizable Molecular Distance Geometry Problem

Definition(DMDGP)

Formally, we say that a DGP instance (G, d,K) is a Discretizable
Molecular Distance Geometry Problem if there exists a vertex order
(v1, . . . , vn) such that

(a) G[{v1, v2, . . . , vK}] is complete;

(b) ∀i ∈ {K + 1, . . . , |V |}:
1 ∀j ∈ {i− 1, i− 2, . . . , i−K} : {vj , vi} ∈ E,
2 CM({vi−K , . . . , vi−1})2 > 0,

I Assumptions ensure a chain of (K + 1)-cliques.

1

2

3

4

5

6

7

(K = 2)
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Exact distances: a branch-and-prune approach
By DMDGP assumptions we have that coordinates xi for each vertex vi
are obtained by intersecting K spheres:

‖xi−1 − xi‖2 = d2
i−1,i

‖xi−2 − xi‖2 = d2
i−2,i

...

‖xi−K − xi‖2 = d2
i−K,i

which leads to at most 2 candidate positions (branching).

Pruning: Direct Distance Feasibility(DDF)

|‖xh − xi‖ − dhi| < ε, ∀h : {h, i} ∈ E and h < i−K

(Lavor et al., Comp. Optim. App., 52, 2012)
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BP Algorithm

Algorithm 1 BP

1: BP(i, n,G, x) # (i > K)
2: if (i > n) then
3: return x
4: else
5: Find solutions {x+i , x−i } for: ‖x` − xi‖2 = d2`,i, ` = i−K, . . . , i− 1.

6: if x+i is feasible then
7: Set xi = x+i and call BP(i+ 1, n,G, x). # 1st candidate position
8: end if
9: if x−i is feasible then

10: Set xi = x−i and call BP(i+ 1, n,G, x). # 2nd candidate position
11: end if
12: end if

douglas@mtm.ufsc.br New Algorithm for DMDGP CTW2020 8 / 28



Branch-and-Prune

Discrete search space: binary tree

Pruning distances: |‖xh − xi‖ − dhi| < ε, ∀(h, i) ∈ E, h < i
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Numerical experiments

C. Lavor, L. Liberti, N. Maculan, A. Mucherino, Comput. Optim. Appl., 52 (2012)

Instance BP-One BP-All DGSOL
Name n |E| CPU LDE CPU #Sol CPU LDE
1brv 57 476 0.00 1.54e-14 0.00 1 1.48 2.74e-01
1aqr 120 929 0.00 1.86e-09 0.00 2 7.77 4.88e-01
1ahl 147 1205 0.00 1.50e-09 0.00 8 6.95 1.46e-01
1brz 159 1394 0.00 3.53e-13 0.00 2 11.39 4.66e-01
1f39a 303 2660 0.00 2.68e-12 0.00 1 37.24 2.80e-01
1acz 324 3060 0.00 3.15e-12 0.02 4 35.97 3.97e-01
1mbn 459 4599 0.00 1.36e-09 0.00 1 124.24 4.46e-01
1rgs 792 7626 0.00 4.22e-13 0.01 1 237.93 4.69e-01
1bpm 1443 14292 0.02 2.85e-13 0.02 1 398.29 5.06e-01
1mqq 2032 19564 0.02 4.90e-12 0.06 1 451.58 5.40e-01
3b34 2790 29188 0.07 1.17e-11 0.07 1 940.95 6.47e-01
2e7z 2907 42098 0.08 4.26e-12 0.09 1 915.39 6.40e-01
1epw 3861 35028 0.16 3.19e-12 0.25 1 2037.86 4.92e-01
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Numerical experiments

C. Lavor, L. Liberti, N. Maculan, A. Mucherino, Comput. Optim. Appl., 52 (2012)

Instance BP-One BP-All SDP-based
Name n |E| CPU LDE CPU #Sol CPU LDE
1brv 57 476 0.00 1.54e-14 0.00 1 0.03 1.24e-14
1aqr 120 929 0.00 1.86e-09 0.00 2 0.06 2.54e-13
1ahl 147 1205 0.00 1.50e-09 0.00 8 0.07 2.41e-14
1brz 159 1394 0.00 3.53e-13 0.00 2 0.07 2.01e-13
1f39a 303 2660 0.00 2.68e-12 0.00 1 0.12 3.91e-13
1acz 324 3060 0.00 3.15e-12 0.02 4 0.13 3.04e-13
1mbn 459 4599 0.00 1.36e-09 0.00 1 0.22 9.67e-14
1rgs 792 7626 0.00 4.22e-13 0.01 1 0.42 1.58e-13
1bpm 1443 14292 0.02 2.85e-13 0.02 1 0.76 7.73e-13
1mqq 2032 19564 0.02 4.90e-12 0.06 1 1.22 6.17e-13
3b34 2790 29188 0.07 1.17e-11 0.07 1 1.68 3.00e-13
2e7z 2907 42098 0.08 4.26e-12 0.09 1 1.88 2.88e-13
1epw 3861 35028 0.16 3.19e-12 0.25 1 2.31 1.45e-12
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Partial reflections

Notation:

• E = ED ∪ EP

• X := X(G) 6= ∅ is the solution set of a DMDGP instance (G,K)

• X̂ denotes the set of realizations considering ED only.

• For x ∈ X̂ and i > K, Rix(y) is the reflection of y ∈ RK through the
plane containing xi−1, xi−2, . . . , xi−K .

• For all i > K, we defined partial reflection operators:

gi(x) = (x1, x2, . . . , xi−1, R
i
x(xi), R

i
x(xi+1), . . . , Rix(xn)).

douglas@mtm.ufsc.br New Algorithm for DMDGP CTW2020 12 / 28



Partial reflections

Useful properties:

1 ‖Rix(y)− xj‖ = ‖y − xj‖, ∀j ∈ {i−K, . . . , i− 1}.

2 All pairwise distances for xi−K , . . . , xi−1, xi, . . . , xn from x ∈ X̂ are
preserved in gi(x).

3 Partial reflections preserve distances related to discretization edges
ED, so that gi(x) ∈ X̂, for every x ∈ X̂.

4 All realizations in X̂ can be generated from a single x ∈ X̂ by the
composition of partial reflection operators gi.
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Partial reflections

Theorem 1 (Liberti et al., 2014)

With probability 1, for all j > K + i, there is a set Hij of 2j−i−K real positive
values such that for each x ∈ X̂, we have ‖xj − xi‖ ∈ Hij . Furthermore, for all

x′, x ∈ X̂ such that x′ 6= x and x′t = xt, for t ≤ i+K − 1,
‖xj − xi‖ = ‖x′j − xi‖ if and only if x′j = Ri+K

x (xj).

34 LIBERTI, LAVOR, MACULAN, MUCHERINO

In this section we give an exposition which is more compact and hopefully clearer
than the one in [151]. We focus on KDMDGP and therefore assume that Uv contains
the K immediate predecessors of v for each v > K. We also assume G is a YES
instance of the KDMDGP, so that |P | = 2 with probability 1.

3.3.8.1. The discretization group. Let GD = (V, ED, d) be the subgraph of G
consisting of the discretization edges, and XD be the set of realizations of GD; since
GD has no pruning edges by definition, the BP search tree for GD is a full binary tree
and |XD| = 2n−K . The discretization edges arrange the realizations so that, at level !,
there are 2!−K possible positions for the vertex v with rank !. We assume that |P | = 2
(see Alg. 1) at each level v of the BP tree, an event which, in absence of pruning edges,
happens with probability 1. Let P = {x0

v, x
1
v} be the two possible realizations of v

at a certain recursive call of Alg. 1 at level v of the BP tree; then because P is an
intersection of K spheres, x1

v is the reflection of x0
v through the hyperplane defined

by x(Uv) = {xv−K , . . . , xv−1}. We denote this reflection operator by Rv
x.

Theorem 3.2 (Cor. 4.6 and Thm. 4.9 in [151]). With probability 1, for all v > K
and u < v − K there is a set Huv of 2v−u−K real positive values such that for each
x ∈ X we have ‖xv − xu‖ ∈ Huv. Furthermore, ∀x′ ∈ X, ‖xv − xu‖ = ‖x′

v − xu‖
if and only if x′

v ∈ {xv, Ru+K
x (xv)}. We sketch the proof in Fig. 3.13 for K = 2;

the solid circles at levels 3, 4, 5 mark the locus of feasible realizations for vertices at
rank 3, 4, 5 in the KDMDGP order. The dashed circles represent the spheres Sx

uv (see
Alg. 1). Intuitively, two branches from level 1 to level 4 or 5 will have equal segment
lengths but different angles between consecutive segments, which will cause the end
nodes to be at different distances from the node at level 1. Observe that the number
of solid circles at each level is a power of two where the exponent depends on the level
index !, and each solid circle contains exactly two realizations (that are reflections of
each other) of the same vertex at rank !.

ν1

ν2

1

2

5
3 4

ν3
ν4

ν5

ν6 ν7

ν8

ν9

ν10

ν11

ν12

ν13
ν14

ν15

ν16

Fig. 3.13. A pruning edge {1, 4} prunes either ν6, ν7 or ν5, ν8.

We now give a basic result on reflections in RK . For any nonzero vector y ∈ RK

let R(y) be the reflection operator through the hyperplane passing through the origin
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Symmetry vertices

Symmetry vertices set:

S := {v` ∈ V | @{vi, vj} ∈ E with i+K < ` ≤ j}.

Theorem 2

Let (G,K) be a feasible KDMDGP and S its set of symmetry vertices.
Then, with probability 1, |X| = 2|S|.

Corollary: If {v1, vn} ∈ E, then |X| = 2.

a
d = R4

x′(c) = R3
x(a)

b = R4
x(a) c = R3

x(b) = R3
x(R4

x(a))
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Reformulation

Given x ∈ X̂, the DMDGP consists in finding a binary vector
s ∈ {0, 1}n−K , such that

x(s) = U(x, s) := gs1K+1 ◦ · · · ◦ g
sn−K
n (x)

satisfies ||xi(s)− xj(s)|| = dij , for all {i, j} ∈ E = ED ∪ EP .

Lemma 3 (Other solutions)

Let x(s) be a valid realization for (G,K). For every

s′ ∈ B := {s′ ∈ {0, 1}n−K | s′` = s` if vK+` /∈ S},

x(s′) ∈ X.
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Pruning edges and sequence of subproblems

New Idea: Given x ∈ X̂, include/handle one pruning edge at a time

• We assume an order for the edges in EP
• The set of pruning edges preceding edge {i, j}:

P ij := {{u,w} ∈ EP | {u,w} < {i, j}}.

Subproblem: Find x such that ‖xi − xj‖ = dij ,
subject to ‖xu − xw‖ = duw,∀{u,w} ∈ ED ∪ P ij .

Definition (Subproblem spanned by pruning edge)

Let (G,K) be a feasible KDMDGP with G = (V,E, d). Let
Gij = (V,Eij , d|Eij ), where Eij = ED ∪ P ij ∪ {i, j}, {i, j} ∈ EP and

d|Eij is the restriction of d to Eij .

Remark: If X 6= ∅ and {u,w} < {i, j}, then X(Guw) ⊃ X(Gij).

douglas@mtm.ufsc.br New Algorithm for DMDGP CTW2020 17 / 28



Necessary symmetry vertices

• Let s ∈ {0, 1}n−K such that x(s) is valid for (Guw,K), ∀{u,w} ∈ P ij .

• The set of necessary symmetry vertices for subproblem (Gij ,K):

Sij = {v` ∈ {vi+K+1, . . . , vj} | 6 ∃{u,w} ∈ P ij , u+K < ` ≤ w}.

Reduced search space: the search space for the new s′ ∈ {0, 1}n−K is
further reduced to

s′ ∈ Bij := {s′ ∈ {0, 1}n−K | s′` = s` if vi+K+` /∈ Sij}.

Lemma 4

Let Sij 6= ∅, ek+1 = {i, j} > {u,w} = ek and x(s) be a valid realization
for (Guw,K). For every s′ ∈ Bij , x(s′) ∈ X(Guw).
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Uniqueness of s′ ∈ Bij

1 If (G,K) is a KDMDGP instance, so is (G[vi, . . . , vj ],K), for
j > K + i.

2 Any DMDGP instance (G[vi, . . . , vj ],K) spanned by {vi, vj} ∈ EP
has only two solutions.

3 These two solutions correspond to a particular configuration of the
components s′i+K , . . . , s

′
j .

4 The only difference between the two is the first component s′i+K .

5 Since vi+K 6∈ Sij and the components of s′` with ` ≤ i+K or ` > j
are kept fixed, we conclude that s′ ∈ Bij is unique.
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New algorithm

Algorithm 2 New BP

1: NewBP(G,K, (e1, . . . , em), x ∈ X̂)
2: Set s = 0, x(0) = x
3: for k = 1, 2, . . . ,m do
4: {i, j} = ek
5: if |Sij | > 0 then
6: Find s′ ∈ Bij : ‖xi(s

′)− xj(s
′)‖ = dij

7: Update s = s′ and x(s) = U(x, s)
8: end if
9: end for

10: return a valid realization x(s)
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Correctness

Proposition: Let x(s) be a valid realization for (Guw,K), for all
{u,w} ∈ P ij . If Sij = ∅, then x(s) is valid for (Gij ,K).

Theorem 5

Let (G,K) be a feasible KDMDGP instance. Considering exact
arithmetic, Algorithm 2 finds x ∈ X.

Proof Sketch. Since x(0) = x ∈ X̂, due to x(s′) ∈ X(Guw),∀s′ ∈ Bij

and X 6= ∅, Step 6 is well-defined. Then, from the exhaustive search in
Step 6, it follows that x(s′) ∈ X(Gij), for every ek = {i, j}. �
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Computational experiments

Artificial instances generated from PDB: consider only the backbone
N − Cα − C, distances are included either when the atoms are
separated by at most three covalent bonds or the distance between
pairs of atoms is smaller than a certain cut-off value.

The natural backbone order for instances generated in this way
provides a vertex order satisfying the DMDGP assumptions.

Quality measure: Mean Distance Error (MDE):

MDE(X,E, d) =
1

|E|
∑
{i,j}∈E

| ‖xi − xj‖2 − dij |
dij

.
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Remarks

• |Sij | is a good indicator of the computational cost for solving
subproblem (Gij ,K). Total work:

W :=
∑
{i,j}∈Ê

2|S
ij |,

where Ê = {{vi, vj} ∈ EP | |Sij | > 0}.

• Maximum work per subproblem: W̄ = maxÊ 2|S
ij |.

• |Sij | depends on the order in which the pruning edges are handled

• Our codes and datasets: https://github.com/michaelsouza/sbbu

• classic Branch-and-Prune: https://github.com/mucherino/mdjeep
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Results: cut-off 6 Å

BP New BP
ID |V | |E| Time MDE Time MDE W̄ij W Speed-up
1N6T 30 236 7.60E-05 8.32E-05 1.77E-05 2.72E-12 2 52 4.29
1FW5 60 558 1.30E-04 1.51E-05 3.51E-05 4.22E-12 2 112 3.70
1ADX 120 1008 2.10E-04 5.62E-12 4.49E-05 3.78E-12 2 232 4.67
1BDO 241 2167 4.10E-04 3.79E-12 9.24E-05 1.39E-11 2 474 4.44
1ALL 480 4932 8.40E-04 8.91E-13 1.90E-04 3.80E-12 2 952 4.42
6S61 522 5298 8.70E-04 6.50E-13 2.06E-04 3.09E-12 2 1036 4.23
1FHL 1002 9811 2.00E-03 6.82E-12 3.97E-04 1.93E-11 2 1996 5.04
4WUA 1033 9727 1.80E-03 1.47E-11 3.94E-04 7.73E-12 8 2060 4.57
6CZF 1494 14163 2.60E-03 1.33E-12 5.79E-04 4.18E-12 2 2980 4.49
5IJN 1950 18266 3.40E-03 1.37E-12 7.64E-04 1.76E-11 16 3908 4.45
6RN2 2052 19919 3.70E-03 1.11E-12 8.27E-04 1.54E-11 16 4104 4.48
1CZA 2694 26452 4.90E-03 1.29E-12 1.07E-03 6.22E-11 2 5380 4.59
6BCO 2856 27090 7.90E-03 4.53E-13 1.10E-03 7.91E-12 16 5730 7.15
1EPW 3861 35028 7.80E-03 1.88E-11 1.44E-03 2.50E-10 2 7714 5.40
5NP0 7584 80337 3.10E-02 6.58E-12 3.58E-03 1.35E-10 256 15562 8.66
5NUG 8760 82717 2.40E-02 1.43E-06 3.45E-03 5.33E-10 16 17592 6.96
4RH7 9015 85831 2.50E-02 1.62E-12 3.67E-03 2.22E-10 16 18054 6.82
3VKH 9126 87621 2.70E+00 3.00E-08 3.62E-03 1.15E-09 256 18556 745.03
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Results: cut-off 5 Å

BP New BP
ID |V | |E| Time MDE Time MDE W̄ij W Speed-up
1N6T 30 176 7.60E-05 5.14E-05 1.04E-05 5.64E-12 2 52 7.31
1FW5 60 417 1.40E-04 7.99E-06 2.11E-05 3.08E-12 2 112 6.63
1ADX 120 659 4.70E-04 3.50E-06 3.49E-05 2.53E-12 2 232 13.48
1BDO 241 1345 3.60E-04 1.50E-07 7.05E-05 1.04E-11 2 474 5.11
1ALL 480 3443 9.80E-04 2.81E-06 1.67E-04 1.27E-12 2 952 5.88
6S61 522 3699 8.70E-04 8.10E-07 1.75E-04 1.39E-12 2 1036 4.98
1FHL 1002 6378 2.70E-03 2.56E-12 2.88E-04 1.17E-11 2 1996 9.38
4WUA 1033 6506 1.80E-03 5.34E-12 2.96E-04 2.94E-12 16 2066 6.08
6CZF 1494 9223 2.40E-03 4.62E-13 4.36E-04 2.33E-12 2 2980 5.51
5IJN 1950 11981 4.00E-03 4.43E-13 6.08E-04 4.23E-12 16 3908 6.58
6RN2 2052 13710 5.50E-03 3.89E-13 8.58E-04 9.35E-12 16 4112 6.41
1CZA 2694 17451 5.80E-03 4.51E-13 8.03E-04 3.06E-11 2 5380 7.22
6BCO 2856 18604 5.00E-03 6.00E-07 1.05E-03 6.96E-12 16 5706 4.75
1EPW 3861 23191 2.30E-02 3.00E-08 1.13E-03 9.78E-11 8 7716 20.29
5NP0 7584 59478 2.90E-01 2.56E-12 2.80E-03 4.11E-11 256 16138 103.55
5NUG 8760 56979 2.70E+00 3.60E-07 2.67E-03 1.05E-10 128 17700 1011.09
4RH7 9015 59346 3.10E-02 5.64E-13 2.97E-03 1.20E-10 32 18068 10.43
3VKH 9126 59592 – – 2.45E-02 1.10E-09 65536 84066
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Computational cost

Total cost of New BP seems to vary linearly with the total work W .
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Final remarks

A new algorithm for DMDGP that efficiently employ symmetry
properties to find the first solution more quickly

It solves a sequence of nested DMDGP subproblems defined by
pruning edges, in a specific order

Numerical experiments indicate a non-trivial speed-up over the
classical BP

Future work: study the impact of different pruning edge orders on the
total cost of New BP.
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