
Fair allocation of indivisible goods

under conflict constraints
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Introduction of the Problem

Fair Division of Indivisible Goods

Given: A set V of items, k agents with profit functions

p1, . . . , pk : V → Z+

Task: Compute a k-partition of V with maximum satisfaction level

let V1,V2, . . . ,Vk be the partition of the items and

Pi =
∑

v∈Vi
pi (v) the profit of agent i

Satisfaction Level: mini Pi profit of the least happy agent

Also called Santa Claus Problem: you have k kids and n presents

and want to distribute them in a fair way.

Make the least happy kid as happy as possible!
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Introduction

• Bezakova and Dani 2005: approximation guarantee of (2− ε)

impossible (under P 6= NP)

• Bansal and Sviridenko 2006 coined the name Santa Claus

Problem, O
(

log log k
log log log k

)
–approximation for a restricted

version where pi (v) ∈ {0, p(v)} ∀v .

• since then many more results and variations, most of these

variants remain hard
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Our Motivation

• practical case: only a constant number of kids

• A conflict graph additionally gives a structure on the items.
Certain pairs of items should not be assigned to the same
agent.

- my daughter does not want two remote controlled cars for

christmas

- my son wants skis or a snowboard, but cannot use both in his

skiing course

• items correspond to vertices in the conflict graph

• edges connect pairs of incompatible items/presents
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Our Motivation

Observation

• A feasible allocation must be an independent set for each

agent.

• A partition of the items may well be infeasible.

=⇒ find instead a partial k coloring.

b

b b

2 two kids - 3 presents
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Results

Observation

Hard, inapproximable problem even for one kid:

Fair 1-division under conflicts ⇐⇒ Independent Set Problem

Our strategy: look at special conflict graphs!

Fair 2-Division without conflicts

This problem is already polynomial equivalent to the binary

knapsack problem and thus weakly NP-hard.

The best we can hope for are pseudopolynomial algorithms!
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Results

Negative Results

• Bipartite Graphs

For each integer k ≥ 2, Fair k-Division Under

Conflicts is strongly NP-hard in the class of bipartite

graphs.

• Other structural results to extend inapproximability results
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Results

Positive Results, Tractable Graph Classes (pseudopolynomial)

• cocomparability

• chordal

• bounded clique-width (=⇒ bounded treewidth)

• biconvex bipartite graphs
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Main Feature of all Pseudopolynomial Algorithms

Introduce k-tuples (p1, . . . , pk) for all possible profit combinations.

The number of these tuples is polynomial, since k is constant and

the profit coefficients can grow only polynomial in the input.

Goal: Find all reachable feasible profit profiles.

• Start with a small graph, for which you can decide for any

profit tuple if it is feasible.

• Add the remaining vertices and edges and complement the

feasible tuples.
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Biconvex Bipartite Graphs

A bipartite graph G = (A∪B,E ) is biconvex if there is an ordering

of A and B that fulfills the adjacency property,

i.e. for every vertex a ∈ A the neighborhood N(a) is a consecutive

interval in B and vice-versa.
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Biconvex Graphs

Structure theorem (Abbas, Stewart [2000])

Let G = (A ∪ B,E ) be a connected biconvex bipartite graph.

Then there exists a biconvex ordering of the vertices of G such

that:

(i) For all ai , aj with a1 ≤ ai < aj ≤ aL or aR ≤ aj < ai ≤ ap there

is N(ai ) ⊆ N(aj).

(ii) The graph G ′ induced by vertex set {aL, . . . , aR} ∪ B is a

connected bipartite permutation graph.

=⇒ cocomparability graph, pseudopolynomial solvable!
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Biconvex Graphs
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aR

Bipartite Permutation Graph

Cocomparability
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Biconvex Graphs

Observation:

Whenever a vertex al is chosen for a kid j , all vertices ai with i ≤ l

are also feasible.

• decide for any kid j , the highest index of a vertex from

a1, a2, . . . , aL−1 assigned to that kid (“guess” all possibilities)

• for all adjacent vertices in B: set all profits in the bipartite

permutation graph to 0

• now use the cocomparability result to solve the bipartite

permutation part (i.e. fill the dynamic programming profile)

• augment the dynamic programming profile by all vertices from

a1, a2, . . . , aL−1 with index lower than the highest index for

the respective kid.
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Biconvex Graphs

Running time:
All together, there are O(n2k) “guesses” and a running of

O(nk+2Qk) for each subproblem on a permutation graph.

(Q is the highest reachable profit over all kids)

=⇒ pseudopolynomial
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Last Slide

Santa Claus in Ischia has a really tough job!

Writing your wish list without conflicts would help him a lot!

Thank you for your attention!
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