Additive Tree $O(\rho \log n)$-Spanners from Tree Breadth ρ

Dieter Rautenbach

Universität Ulm

Additive Tree $O(\rho \log n)$-Spanners from Tree Breadth ρ

Dieter Rautenbach

Universität Ulm

Joint with Oliver Bendele

Spanners

Spanners

Spanners

Spanners

Spanners

Definition (Additive tree k-spanner)

Spanners

Definition (Additive tree k-spanner)
Let H be a subgraph of a graph G.

Spanners

Definition (Additive tree k-spanner)
Let H be a subgraph of a graph G.

- H is k-additive if

$$
d_{H}(u, v) \leq d_{G}(u, v)+k
$$

for every two vertices u and v of H.

Spanners

Definition (Additive tree k-spanner)
Let H be a subgraph of a graph G.

- H is k-additive if

$$
d_{H}(u, v) \leq d_{G}(u, v)+k
$$

for every two vertices u and v of H.

- H is an additive k-spanner if H is spanning and k-additive.

Spanners

Definition (Additive tree k-spanner)
Let H be a subgraph of a graph G.

- H is k-additive if

$$
d_{H}(u, v) \leq d_{G}(u, v)+k
$$

for every two vertices u and v of H.

- H is an additive k-spanner if H is spanning and k-additive.
- H is an additive tree k-spanner if H is a tree and an additive k-spanner.

Spanners

Definition (Additive tree k-spanner)

Let H be a subgraph of a graph G.

- H is k-additive if

$$
d_{H}(u, v) \leq d_{G}(u, v)+k
$$

for every two vertices u and v of H.

- H is an additive k-spanner if H is spanning and k-additive.
- H is an additive tree k-spanner if H is a tree and an additive k-spanner.

Replacing

$$
" d_{H}(u, v) \leq d_{G}(u, v)+k^{\prime \prime}
$$

with

$$
" d_{H}(u, v) \leq k \cdot d_{G}(u, v)^{\prime \prime}
$$

yields the multiplicative versions.

Tree breadth

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

$$
\max \left\{d_{G}(u, v): v \in U\right\}
$$

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

$$
\min \left\{\max \left\{d_{G}(u, v): v \in U\right\}: u \in V(G)\right\} .
$$

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

$$
\operatorname{rad}_{G}(U)=\min \left\{\max \left\{d_{G}(u, v): v \in U\right\}: u \in V(G)\right\} .
$$

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

$$
\operatorname{rad}_{G}(U)=\min \left\{\max \left\{d_{G}(u, v): v \in U\right\}: u \in V(G)\right\} .
$$

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

$$
\operatorname{rad}_{G}(U)=\min \left\{\max \left\{d_{G}(u, v): v \in U\right\}: u \in V(G)\right\} .
$$

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

$$
\operatorname{rad}_{G}(U)=\min \left\{\max \left\{d_{G}(u, v): v \in U\right\}: u \in V(G)\right\} .
$$

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

$$
\operatorname{rad}_{G}(U)=\min \left\{\max \left\{d_{G}(u, v): v \in U\right\}: u \in V(G)\right\} .
$$

Tree breadth

Definition (Dragan and Köhler 2014)

Tree breadth

Definition (Dragan and Köhler 2014)

The breadth of a tree decomposition $\left(T,\left(X_{t}\right)_{t \in V(T)}\right)$ of a connected graph G is

$$
\max \left\{\operatorname{rad}_{G}\left(X_{t}\right): t \in V(T)\right\} .
$$

Tree breadth

Definition (Dragan and Köhler 2014)

The breadth of a tree decomposition $\left(T,\left(X_{t}\right)_{t \in V(T)}\right)$ of a connected graph G is

$$
\max \left\{\operatorname{rad}_{G}\left(X_{t}\right): t \in V(T)\right\} .
$$

The tree breadth $\operatorname{tb}(G)$ of G is the minimum breadth of a tree decomposition of G.

Tree breadth

Definition (Dragan and Köhler 2014)

The breadth of a tree decomposition $\left(T,\left(X_{t}\right)_{t \in V(T)}\right)$ of a connected graph G is

$$
\max \left\{\operatorname{rad}_{G}\left(X_{t}\right): t \in V(T)\right\} .
$$

The tree breadth $\operatorname{tb}(G)$ of G is the minimum breadth of a tree decomposition of G.

- (Ducoffe, Legay, and Nisse 2019) Tree breadth is NP-hard.

Tree breadth

Definition (Dragan and Köhler 2014)

The breadth of a tree decomposition $\left(T,\left(X_{t}\right)_{t \in V(T)}\right)$ of a connected graph G is

$$
\max \left\{\operatorname{rad}_{G}\left(X_{t}\right): t \in V(T)\right\}
$$

The tree breadth $\operatorname{tb}(G)$ of G is the minimum breadth of a tree decomposition of G.

- (Ducoffe, Legay, and Nisse 2019) Tree breadth is NP-hard.
- (Dourisboure and Gavoille 2007, for tree length) A tree decomposition of breadth at most $6 \operatorname{tb}(G)+1$ can be found in linear time.

Tree breadth \Rightarrow spanners

Tree breadth \Rightarrow spanners

Let G be a connected graph of order n, size m, and tree breadth ρ.

Theorem (Dragan and Köhler 2014)
Given G as above, one can construct in time $O(m \log n)$ a multiplicative tree $O(\rho \log n)$-spanner of G.

Tree breadth \Rightarrow spanners

Let G be a connected graph of order n, size m, and tree breadth ρ.

Theorem (Dragan and Köhler 2014)
Given G as above, one can construct in time $O(m \log n)$ a multiplicative tree $O(\rho \log n)$-spanner of G.

Theorem (Dragan and Abu-Ata 2014)
Given G as above, one can efficiently construct a collection of $O(\log n)$ collective additive tree $O(\rho \log n)$-spanners,

Tree breadth \Rightarrow spanners

Let G be a connected graph of order n, size m, and tree breadth ρ.

Theorem (Dragan and Köhler 2014)
Given G as above, one can construct in time $O(m \log n)$ a multiplicative tree $O(\rho \log n)$-spanner of G.

Theorem (Dragan and Abu-Ata 2014)
Given G as above, one can efficiently construct a collection of $O(\log n)$ collective additive tree $O(\rho \log n)$-spanners, that is, spanning trees $T_{1}, \ldots, T_{O(\log n)}$

Tree breadth \Rightarrow spanners

Let G be a connected graph of order n, size m, and tree breadth ρ.

Theorem (Dragan and Köhler 2014)
Given G as above, one can construct in time $O(m \log n)$ a multiplicative tree $O(\rho \log n)$-spanner of G.

Theorem (Dragan and Abu-Ata 2014)
Given G as above, one can efficiently construct a collection of $O(\log n)$ collective additive tree $O(\rho \log n)$-spanners, that is, spanning trees $T_{1}, \ldots, T_{O(\log n)}$ such that, for every two vertices u and v of G,

Tree breadth \Rightarrow spanners

Let G be a connected graph of order n, size m, and tree breadth ρ.

Theorem (Dragan and Köhler 2014)
Given G as above, one can construct in time $O(m \log n)$ a multiplicative tree $O(\rho \log n)$-spanner of G.

Theorem (Dragan and Abu-Ata 2014)
Given G as above, one can efficiently construct a collection of $O(\log n)$ collective additive tree $O(\rho \log n)$-spanners, that is, spanning trees $T_{1}, \ldots, T_{O(\log n)}$ such that, for every two vertices u and v of G, there is some tree T_{i} with

Tree breadth \Rightarrow spanners

Let G be a connected graph of order n, size m, and tree breadth ρ.

Theorem (Dragan and Köhler 2014)
Given G as above, one can construct in time $O(m \log n)$ a multiplicative tree $O(\rho \log n)$-spanner of G.

Theorem (Dragan and Abu-Ata 2014)
Given G as above, one can efficiently construct a collection of $O(\log n)$ collective additive tree $O(\rho \log n)$-spanners, that is, spanning trees $T_{1}, \ldots, T_{O(\log n)}$ such that, for every two vertices u and v of G, there is some tree T_{i} with

$$
d_{T_{i}}(u, v) \leq d_{G}(u, v)+O(\rho \log n)
$$

Tree breadth \Rightarrow spanners

Theorem (Bendele and R 2020)
Given G as above, one can construct in time $O(m \log n)$ an additive tree $O(\rho \log n)$-spanner of G.

Tree breadth \Rightarrow spanners

Theorem (Bendele and R 2020)
Given G as above, one can construct in time $O(m \log n)$ an additive tree $O(\rho \log n)$-spanner of G.

Figure: The graph G_{3}.

Tree breadth \Rightarrow spanners

Theorem (Bendele and R 2020)
Given G as above, one can construct in time $O(m \log n)$ an additive tree $O(\rho \log n)$-spanner of G.

Figure: The graph G_{3}.
(Kratsch, Le, Müller, Prisner, and Wagner 2002)
G_{k} admits no additive tree $\operatorname{tb}\left(G_{k}\right) \log _{2}\left(\frac{n\left(G_{k}\right)}{3}\right)$-spanner

Tree breadth \Rightarrow spanners

Theorem (Bendele and R 2020)
Given G as above, one can construct in time $O(m \log n)$ an additive tree $O(\rho \log n)$-spanner of G.

Figure: The graph G_{3}.
(Kratsch, Le, Müller, Prisner, and Wagner 2002)
G_{k} admits no additive tree $\operatorname{tb}\left(G_{k}\right) \log _{2}\left(\frac{n\left(G_{k}\right)}{3}\right)$-spanner but $\operatorname{tb}\left(G_{k}\right)=1$.

Tree breadth \Rightarrow spanners

Tree breadth \Rightarrow spanners

For a tree T, let $\operatorname{pbt}(T)$ be the maximum depth of a perfect binary tree that is a topological minor of T.

Tree breadth \Rightarrow spanners

For a tree T, let $\operatorname{pbt}(T)$ be the maximum depth of a perfect binary tree that is a topological minor of T.

Tree breadth \Rightarrow spanners

For a tree T, let $\operatorname{pbt}(T)$ be the maximum depth of a perfect binary tree that is a topological minor of T.

Tree breadth \Rightarrow spanners

For a tree T, let $\operatorname{pbt}(T)$ be the maximum depth of a perfect binary tree that is a topological minor of T.

$\Rightarrow 3 \leq \operatorname{pbt}(T)$

Tree breadth \Rightarrow spanners

For a tree T, let $\operatorname{pbt}(T)$ be the maximum depth of a perfect binary tree that is a topological minor of T.

$\Rightarrow 3 \leq \operatorname{pbt}(T) \leq O(\log (n(T)))$.

Tree breadth \Rightarrow spanners

Theorem (Bendele and R 2020)

Given G and tree decomposition $\left(T,\left(X_{t}\right)_{t \in V(T)}\right)$ of G of breadth ρ, one can construct in time $O(m \cdot \operatorname{pbt}(T))$ an
additive tree $O(\rho \cdot \operatorname{pbt}(T))$-spanner of G.

Tree breadth \Rightarrow spanners

Theorem (Bendele and R 2020)

Given G and tree decomposition $\left(T,\left(X_{t}\right)_{t \in V(T)}\right)$ of G of breadth ρ, one can construct in time $O(m \cdot \operatorname{pbt}(T))$ an additive tree $O(\rho \cdot \operatorname{pbt}(T))$-spanner of G.

Corollary (Bendele and R 2020)

Given G and given a
multiplicative tree k-spanner T of G, one can construct in time $O(m n)$ an
additive tree $O(k \log n(G))$-spanner of G.

Tree breadth \Rightarrow spanners

- Allowing more edges leads to better spanners...

Tree breadth \Rightarrow spanners

- Allowing more edges leads to better spanners...
(Dourisboure, Dragan, Gavoille, and Yan 2007)
G has an additive $O(\rho)$-spanner with $O(\rho n)$ edges.

Tree breadth \Rightarrow spanners

- Allowing more edges leads to better spanners...
(Dourisboure, Dragan, Gavoille, and Yan 2007) G has an additive $O(\rho)$-spanner with $O(\rho n)$ edges.
- Good additive tree spanners for special graphs.

Tree breadth \Rightarrow spanners

- Allowing more edges leads to better spanners...
(Dourisboure, Dragan, Gavoille, and Yan 2007) G has an additive $O(\rho)$-spanner with $O(\rho n)$ edges.
- Good additive tree spanners for special graphs.

Proofs

For a tree T, let $L(T)$ be the set of leaves of T.

Proofs

For a tree T, let $L(T)$ be the set of leaves of T.

Lemma (Bendele and R 2020)
Given G, a subtree S of G, and a set U of vertices of G,

Proofs

For a tree T, let $L(T)$ be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can construct in time $O(m)$ a subtree S^{\prime} of G such that

Proofs

For a tree T, let $L(T)$ be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can construct in time $O(m)$ a subtree S^{\prime} of G such that

- $S \subseteq S^{\prime}$ and $U \subseteq V\left(S^{\prime}\right)$,

Proofs

For a tree T, let $L(T)$ be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can construct in time $O(m)$ a subtree S^{\prime} of G such that

- $S \subseteq S^{\prime}$ and $U \subseteq V\left(S^{\prime}\right)$,
- $d_{S^{\prime}}(u, V(S))=d_{G}(u, V(S))$ for every vertex u in U, and

Proofs

For a tree T, let $L(T)$ be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can construct in time $O(m)$ a subtree S^{\prime} of G such that

- $S \subseteq S^{\prime}$ and $U \subseteq V\left(S^{\prime}\right)$,
- $d_{S^{\prime}}(u, V(S))=d_{G}(u, V(S))$ for every vertex u in U, and
- $L\left(S^{\prime}\right) \subseteq L(S) \cup U$.

Proofs

For a tree T, let $L(T)$ be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can construct in time $O(m)$ a subtree S^{\prime} of G such that

- $S \subseteq S^{\prime}$ and $U \subseteq V\left(S^{\prime}\right)$,
- $d_{S^{\prime}}(u, V(S))=d_{G}(u, V(S))$ for every vertex u in U, and
- $L\left(S^{\prime}\right) \subseteq L(S) \cup U$.

Proof.

Contract S to r,

Proofs

For a tree T, let $L(T)$ be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can construct in time $O(m)$ a subtree S^{\prime} of G such that

- $S \subseteq S^{\prime}$ and $U \subseteq V\left(S^{\prime}\right)$,
- $d_{S^{\prime}}(u, V(S))=d_{G}(u, V(S))$ for every vertex u in U, and
- $L\left(S^{\prime}\right) \subseteq L(S) \cup U$.

Proof.

Contract S to r, breadth first search from r,

Proofs

For a tree T, let $L(T)$ be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can construct in time $O(m)$ a subtree S^{\prime} of G such that

- $S \subseteq S^{\prime}$ and $U \subseteq V\left(S^{\prime}\right)$,
- $d_{S^{\prime}}(u, V(S))=d_{G}(u, V(S))$ for every vertex u in U, and
- $L\left(S^{\prime}\right) \subseteq L(S) \cup U$.

Proof.

Contract S to r, breadth first search from r, uncontract S.

Proofs

For a tree T, let $L(T)$ be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can construct in time $O(m)$ a subtree S^{\prime} of G such that

- $S \subseteq S^{\prime}$ and $U \subseteq V\left(S^{\prime}\right)$,
- $d_{S^{\prime}}(u, V(S))=d_{G}(u, V(S))$ for every vertex u in U, and
- $L\left(S^{\prime}\right) \subseteq L(S) \cup U$.

Proof.

Contract S to r, breadth first search from r, uncontract S.

Proofs

Inspired by a lemma of Kratsch, Le, Müller, Prisner, and Wagner (2002):

Proofs

Inspired by a lemma of Kratsch, Le, Müller, Prisner, and Wagner (2002):

Lemma (Bendele and R 2020)

Given G and a ρ-additive subtree S of G such that

$$
d_{G}(u, V(S)) \leq \rho^{\prime} \text { for every vertex } u \text { of } G
$$

Proofs

Inspired by a lemma of Kratsch, Le, Müller, Prisner, and Wagner (2002):

Lemma (Bendele and R 2020)

Given G and a ρ-additive subtree S of G such that

$$
d_{G}(u, V(S)) \leq \rho^{\prime} \text { for every vertex } u \text { of } G
$$

one can construct in time $O(m)$ an
additive tree $\left(\rho+4 \rho^{\prime}\right)$-spanner of G.

Proofs
Proof.

Proofs

Proof.

Proofs

Proof.

$d_{S^{\prime}}(u, v)$

Proofs

Proof.

$d_{S^{\prime}}(u, v)=d_{S^{\prime}}\left(u, u^{\prime}\right)+d_{S}\left(u^{\prime}, v^{\prime}\right)+d_{S^{\prime}}\left(v^{\prime}, v\right)$

Proofs

Proof.

$$
\begin{aligned}
d_{S^{\prime}}(u, v) & =d_{S^{\prime}}\left(u, u^{\prime}\right)+d_{S}\left(u^{\prime}, v^{\prime}\right)+d_{S^{\prime}}\left(v^{\prime}, v\right) \\
& \leq \rho^{\prime}
\end{aligned}
$$

Proofs

Proof.

$$
\begin{aligned}
d_{S^{\prime}}(u, v) & =d_{S^{\prime}}\left(u, u^{\prime}\right)+d_{S}\left(u^{\prime}, v^{\prime}\right)+d_{S^{\prime}}\left(v^{\prime}, v\right) \\
& \leq \rho^{\prime}+\left(d_{G}\left(u^{\prime}, v^{\prime}\right)+\rho\right)
\end{aligned}
$$

Proofs

Proof.

$$
\begin{aligned}
d_{S^{\prime}}(u, v) & =d_{S^{\prime}}\left(u, u^{\prime}\right)+d_{S}\left(u^{\prime}, v^{\prime}\right)+d_{S^{\prime}}\left(v^{\prime}, v\right) \\
& \leq \rho^{\prime}+\left(d_{G}\left(u^{\prime}, v^{\prime}\right)+\rho\right)+\rho^{\prime}
\end{aligned}
$$

Proofs

Proof.

$$
\begin{aligned}
d_{S^{\prime}}(u, v) & =d_{S^{\prime}}\left(u, u^{\prime}\right)+d_{S}\left(u^{\prime}, v^{\prime}\right)+d_{S^{\prime}}\left(v^{\prime}, v\right) \\
& \leq \rho^{\prime}+\left(d_{G}\left(u^{\prime}, v^{\prime}\right)+\rho\right)+\rho^{\prime} \\
& \leq \rho+2 \rho^{\prime}
\end{aligned}
$$

Proofs

Proof.

$$
\begin{aligned}
d_{S^{\prime}}(u, v) & =d_{S^{\prime}}\left(u, u^{\prime}\right)+d_{S}\left(u^{\prime}, v^{\prime}\right)+d_{S^{\prime}}\left(v^{\prime}, v\right) \\
& \leq \rho^{\prime}+\left(d_{G}\left(u^{\prime}, v^{\prime}\right)+\rho\right)+\rho^{\prime} \\
& \leq \rho+2 \rho^{\prime}+d_{G}\left(u^{\prime}, u\right)+d_{G}(u, v)+d_{G}\left(v, v^{\prime}\right)
\end{aligned}
$$

Proofs

Proof.

$$
\begin{aligned}
d_{S^{\prime}}(u, v) & =d_{S^{\prime}}\left(u, u^{\prime}\right)+d_{S}\left(u^{\prime}, v^{\prime}\right)+d_{S^{\prime}}\left(v^{\prime}, v\right) \\
& \leq \rho^{\prime}+\left(d_{G}\left(u^{\prime}, v^{\prime}\right)+\rho\right)+\rho^{\prime} \\
& \leq \rho+2 \rho^{\prime}+d_{G}\left(u^{\prime}, u\right)+d_{G}(u, v)+d_{G}\left(v, v^{\prime}\right) \\
& \leq \rho+2 \rho^{\prime}
\end{aligned}
$$

Proofs

Proof.

$$
\begin{aligned}
d_{S^{\prime}}(u, v) & =d_{S^{\prime}}\left(u, u^{\prime}\right)+d_{S}\left(u^{\prime}, v^{\prime}\right)+d_{S^{\prime}}\left(v^{\prime}, v\right) \\
& \leq \rho^{\prime}+\left(d_{G}\left(u^{\prime}, v^{\prime}\right)+\rho\right)+\rho^{\prime} \\
& \leq \rho+2 \rho^{\prime}+d_{G}\left(u^{\prime}, u\right)+d_{G}(u, v)+d_{G}\left(v, v^{\prime}\right) \\
& \leq \rho+2 \rho^{\prime}+\rho^{\prime}
\end{aligned}
$$

Proofs

Proof.

$$
\begin{aligned}
d_{S^{\prime}}(u, v) & =d_{S^{\prime}}\left(u, u^{\prime}\right)+d_{S}\left(u^{\prime}, v^{\prime}\right)+d_{S^{\prime}}\left(v^{\prime}, v\right) \\
& \leq \rho^{\prime}+\left(d_{G}\left(u^{\prime}, v^{\prime}\right)+\rho\right)+\rho^{\prime} \\
& \leq \rho+2 \rho^{\prime}+d_{G}\left(u^{\prime}, u\right)+d_{G}(u, v)+d_{G}\left(v, v^{\prime}\right) \\
& \leq \rho+2 \rho^{\prime}+\rho^{\prime}+d_{G}(u, v)
\end{aligned}
$$

Proofs

Proof.

$$
\begin{aligned}
d_{S^{\prime}}(u, v) & =d_{S^{\prime}}\left(u, u^{\prime}\right)+d_{S}\left(u^{\prime}, v^{\prime}\right)+d_{S^{\prime}}\left(v^{\prime}, v\right) \\
& \leq \rho^{\prime}+\left(d_{G}\left(u^{\prime}, v^{\prime}\right)+\rho\right)+\rho^{\prime} \\
& \leq \rho+2 \rho^{\prime}+d_{G}\left(u^{\prime}, u\right)+d_{G}(u, v)+d_{G}\left(v, v^{\prime}\right) \\
& \leq \rho+2 \rho^{\prime}+\rho^{\prime}+d_{G}(u, v)+\rho^{\prime}
\end{aligned}
$$

Proofs

Proof.

$$
\begin{aligned}
d_{S^{\prime}}(u, v) & =d_{S^{\prime}}\left(u, u^{\prime}\right)+d_{S}\left(u^{\prime}, v^{\prime}\right)+d_{S^{\prime}}\left(v^{\prime}, v\right) \\
& \leq \rho^{\prime}+\left(d_{G}\left(u^{\prime}, v^{\prime}\right)+\rho\right)+\rho^{\prime} \\
& \leq \rho+2 \rho^{\prime}+d_{G}\left(u^{\prime}, u\right)+d_{G}(u, v)+d_{G}\left(v, v^{\prime}\right) \\
& \leq \rho+2 \rho^{\prime}+\rho^{\prime}+d_{G}(u, v)+\rho^{\prime} \\
& \leq \rho+4 \rho^{\prime}+d_{G}(u, v)
\end{aligned}
$$

Proofs

Proof.

$$
\begin{aligned}
d_{S^{\prime}}(u, v) & =d_{S^{\prime}}\left(u, u^{\prime}\right)+d_{S}\left(u^{\prime}, v^{\prime}\right)+d_{S^{\prime}}\left(v^{\prime}, v\right) \\
& \leq \rho^{\prime}+\left(d_{G}\left(u^{\prime}, v^{\prime}\right)+\rho\right)+\rho^{\prime} \\
& \leq \rho+2 \rho^{\prime}+d_{G}\left(u^{\prime}, u\right)+d_{G}(u, v)+d_{G}\left(v, v^{\prime}\right) \\
& \leq \rho+2 \rho^{\prime}+\rho^{\prime}+d_{G}(u, v)+\rho^{\prime} \\
& \leq \rho+4 \rho^{\prime}+d_{G}(u, v)
\end{aligned}
$$

Proofs

Proofs

Let T be a tree.

Proofs

Let T be a tree.

Proofs

Let T be a tree.

Proofs

Let T be a tree.

Proofs

Let T be a tree.

$$
T_{0}
$$

Proofs

Let T be a tree.

$$
T_{0} \supset T_{1}
$$

Proofs

Let T be a tree.

$$
T_{0} \supset T_{1} \supset T_{2}
$$

Proofs

Let T be a tree.

$$
T_{0} \supset T_{1} \supset T_{2} \supset \ldots \supset T_{d(T)}
$$

Proofs

Let T be a tree.

$$
T_{0} \supset T_{1} \supset T_{2} \supset \ldots \supset T_{d(T)}
$$

where

- $T_{0}=T$.

Proofs

Let T be a tree.

$$
T_{0} \supset T_{1} \supset T_{2} \supset \ldots \supset T_{d(T)}
$$

where

- $T_{0}=T$.
- If $T_{i} \neq P_{\ell}$, then $T_{i+1} \subseteq T_{i}$ minimal with all branch vertices of T_{i}.

Proofs

Let T be a tree.

$$
T_{0} \supset T_{1} \supset T_{2} \supset \ldots \supset T_{d(T)}
$$

where

- $T_{0}=T$.
- If $T_{i} \neq P_{\ell}$, then $T_{i+1} \subseteq T_{i}$ minimal with all branch vertices of T_{i}.
- If $T_{i}=P_{\ell}$ for $\ell \geq 3$, then let $T_{i+1} \subseteq T_{i}$ have order 1 .

Proofs

Let T be a tree.

$$
T_{0} \supset T_{1} \supset T_{2} \supset \ldots \supset T_{d(T)}
$$

where

- $T_{0}=T$.
- If $T_{i} \neq P_{\ell}$, then $T_{i+1} \subseteq T_{i}$ minimal with all branch vertices of T_{i}.
- If $T_{i}=P_{\ell}$ for $\ell \geq 3$, then let $T_{i+1} \subseteq T_{i}$ have order 1 .
- If $T_{i}=P_{\ell}$ for $\ell \leq 2$, then terminate; $d(T) \leftarrow i$.

Proofs

Let T be a tree.

$$
T_{0} \supset T_{1} \supset T_{2} \supset \ldots \supset T_{d(T)}
$$

where

- $T_{0}=T$.
- If $T_{i} \neq P_{\ell}$, then $T_{i+1} \subseteq T_{i}$ minimal with all branch vertices of T_{i}.
- If $T_{i}=P_{\ell}$ for $\ell \geq 3$, then let $T_{i+1} \subseteq T_{i}$ have order 1 .
- If $T_{i}=P_{\ell}$ for $\ell \leq 2$, then terminate; $d(T) \leftarrow i$.

> Lemma (Bendele and R 2020)
> $\operatorname{pbt}(T)=d(T)$ for every tree T

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition $\left(T,\left(X_{t}\right)_{t \in V(T)}\right)$ of breadth ρ, one can construct in time $O(m \cdot \mathrm{~d}(T))$ a $16 \rho \mathrm{~d}(T)$-additive subtree S of G

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition $\left(T,\left(X_{t}\right)_{t \in V(T)}\right)$ of breadth ρ, one can construct in time $O(m \cdot \mathrm{~d}(T))$ a $16 \rho \mathrm{~d}(T)$-additive subtree S of G intersecting each bag of the given tree-decomposition.

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition $\left(T,\left(X_{t}\right)_{t \in V(T)}\right)$ of breadth ρ, one can construct in time $O(m \cdot \mathrm{~d}(T))$ a $16 \rho \mathrm{~d}(T)$-additive subtree S of G intersecting each bag of the given tree-decomposition.

Proof.

$T_{0} \supset T_{1} \supset T_{2} \supset \ldots \supset T_{d}$.

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition $\left(T,\left(X_{t}\right)_{t \in V(T)}\right)$ of breadth ρ, one can construct in time $O(m \cdot \mathrm{~d}(T))$ a $16 \rho \mathrm{~d}(T)$-additive subtree S of G intersecting each bag of the given tree-decomposition.

Proof.

$T_{0} \supset T_{1} \supset T_{2} \supset \ldots \supset T_{d}$. For i from d down to 0 , construct a subtree S_{i} of G

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition $\left(T,\left(X_{t}\right)_{t \in V(T)}\right)$ of breadth ρ, one can construct in time $O(m \cdot \mathrm{~d}(T))$ a $16 \rho \mathrm{~d}(T)$-additive subtree S of G intersecting each bag of the given tree-decomposition.

Proof.

$T_{0} \supset T_{1} \supset T_{2} \supset \ldots \supset T_{d}$. For i from d down to 0 , construct a subtree S_{i} of G such that

- S_{i} contains a vertex from bag X_{t} for every vertex t of T_{i},

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition $\left(T,\left(X_{t}\right)_{t \in V(T)}\right)$ of breadth ρ, one can construct in time $O(m \cdot \mathrm{~d}(T))$ a $16 \rho \mathrm{~d}(T)$-additive subtree S of G intersecting each bag of the given tree-decomposition.

Proof.

$T_{0} \supset T_{1} \supset T_{2} \supset \ldots \supset T_{d}$. For i from d down to 0 , construct a subtree S_{i} of G such that

- S_{i} contains a vertex from bag X_{t} for every vertex t of T_{i},
- S_{i} is $16 \rho(d-i)$-additive.

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition $\left(T,\left(X_{t}\right)_{t \in V(T)}\right)$ of breadth ρ, one can construct in time $O(m \cdot \mathrm{~d}(T))$ a $16 \rho \mathrm{~d}(T)$-additive subtree S of G intersecting each bag of the given tree-decomposition.

Proof.

$T_{0} \supset T_{1} \supset T_{2} \supset \ldots \supset T_{d}$. For i from d down to 0 , construct a subtree S_{i} of G such that

- S_{i} contains a vertex from bag X_{t} for every vertex t of T_{i},
- S_{i} is $16 \rho(d-i)$-additive.
$n\left(S_{d}\right) \leq 2$.

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition $\left(T,\left(X_{t}\right)_{t \in V(T)}\right)$ of breadth ρ, one can construct in time $O(m \cdot \mathrm{~d}(T))$ a $16 \rho \mathrm{~d}(T)$-additive subtree S of G intersecting each bag of the given tree-decomposition.

Proof.

$T_{0} \supset T_{1} \supset T_{2} \supset \ldots \supset T_{d}$. For i from d down to 0 , construct a subtree S_{i} of G such that

- S_{i} contains a vertex from bag X_{t} for every vertex t of T_{i},
- S_{i} is $16 \rho(d-i)$-additive.
$n\left(S_{d}\right) \leq 2 . S \leftarrow S_{0}$.

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition $\left(T,\left(X_{t}\right)_{t \in V(T)}\right)$ of breadth ρ, one can construct in time $O(m \cdot \mathrm{~d}(T))$ a $16 \rho \mathrm{~d}(T)$-additive subtree S of G intersecting each bag of the given tree-decomposition.

Proof.

$T_{0} \supset T_{1} \supset T_{2} \supset \ldots \supset T_{d}$. For i from d down to 0 , construct a subtree S_{i} of G such that

- S_{i} contains a vertex from bag X_{t} for every vertex t of T_{i},
- S_{i} is $16 \rho(d-i)$-additive.
$n\left(S_{d}\right) \leq 2 . S \leftarrow S_{0}$.

Thank you for the attention!

