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Definition (Additive tree k-spanner)
Let H be a subgraph of a graph G.
@ H is k-additive if
du(u,v) < dg(u,v)+ k
for every two vertices u and v of H.
@ H is an additive k-spanner if H is spanning and k-additive.

@ H is an additive tree k-spanner if H is a tree and an additive
k-spanner.

Replacing
“dH(Uv V) < dG(”? V) + K"

with
“dy(u,v) < k-dg(u,v)’
yields the multiplicative versions.
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Definition (Dragan and Kdhler 2014)

The breadth of a tree decomposition (T, (X:):ev(r)) of a connected
graph G is
max {radg(Xt) ‘te V(T)}.

The tree breadth th(G) of G is the minimum breadth of a tree
decomposition of G.

o (Ducoffe, Legay, and Nisse 2019)
Tree breadth is NP-hard.

@ (Dourisboure and Gavoille 2007, for tree length)
A tree decomposition of breadth at most 6tb(G) + 1 can be found in

linear time.
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Given G as above, one can efficiently construct a collection of O(log n)
collective additive tree O(plog n)-spanners,

that is, spanning trees Ty, ..., To(ogn) Such that, for every two vertices u

and v of G, there is some tree T; with

dr.(u,v) < dg(u,v)+ O(plog n).
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additive tree O(plog n)-spanner of G.

Figure: The graph Gs.

(Kratsch, Le, Miiller, Prisner, and Wagner 2002)
Gk admits no additive tree th(Gy) log, ( (Gk)> -spanner but tb(Gk) = 1.
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For a tree T, let pbt(T) be the maximum depth of a perfect binary tree
that is a topological minor of T.

S

= 3 < pbt(T) < O(log(n(T))).

8/16



Tree breadth = spanners

Theorem (Bendele and R 2020)

Given G and tree decomposition (T, (X:)iev(t)) of G of breadth p, one
can construct in time O(m - pbt(T)) an

additive tree O(p - pbt(T))-spanner of G.

9/16



Tree breadth = spanners

Theorem (Bendele and R 2020)

Given G and tree decomposition (T, (X:)iev(t)) of G of breadth p, one
can construct in time O(m - pbt(T)) an
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Inspired by a lemma of Kratsch, Le, Miiller, Prisner, and Wagner (2002):

Lemma (Bendele and R 2020)
Given G and a p-additive subtree S of G such that
dc(u, V(S)) < p’ for every vertex u of G,

one can construct in time O(m) an
additive tree (p + 4p')-spanner of G.
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Proofs
Let T be a tree.

To>T1iD>DT,D>...D Td(T),
where
o To=T.
o If T; # Py, then T;11 C T; minimal with all branch vertices of T;.
o If T; = Py for £ > 3, then let T;11 C T; have order 1.
o If T; = Py for £ <2, then terminate; d(T) « i.

Lemma (Bendele and R 2020)
pbt(T) = d(T) for every tree T. J

14/16



Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)teV(T)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G

15/16



Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)teV(T)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

15/16



Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)teV(T)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.
ToDT1iDTrD...D Ty

15/16




Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)te V(-,-)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

ToD T1DTrD...D Ty. For i from d down to 0, construct a subtree S;
of G

15/16



Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)te V(-,-)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

ToD>T1i D ToD...D Ty4. For i from d down to 0, construct a subtree S;
of G such that

@ S; contains a vertex from bag X; for every vertex t of T;,

15/16




Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)te V(-,-)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

ToD>T1i D ToD...D Ty4. For i from d down to 0, construct a subtree S;
of G such that

@ S; contains a vertex from bag X; for every vertex t of T;,
e S;is 16p(d — i)-additive.

15/16




Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)te V(-,-)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

ToD>T1i D ToD...D Ty4. For i from d down to 0, construct a subtree S;
of G such that

@ S; contains a vertex from bag X; for every vertex t of T;,
e S;is 16p(d — i)-additive.
n(Sd) < 2.

15/16



Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)te V(-,-)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

ToD>T1i D ToD...D Ty4. For i from d down to 0, construct a subtree S;
of G such that

@ S; contains a vertex from bag X; for every vertex t of T;,
e S;is 16p(d — i)-additive.
n(Sd) <2 S 50.

15/16



Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)te V(-,-)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

ToD>T1i D ToD...D Ty4. For i from d down to 0, construct a subtree S;
of G such that

@ S; contains a vertex from bag X; for every vertex t of T;,
e S;is 16p(d — i)-additive.
n(Sd) <2 S 50. L]

15/16



Thank you for the attention!
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