Additive Tree O(p log n)-Spanners from Tree Breadth p

Dieter Rautenbach

Universitat Ulm

1/16

Additive Tree O(p log n)-Spanners from Tree Breadth p

Dieter Rautenbach

Universitat Ulm

Joint with Oliver Bendele

1/16

Spanners

2/16

Spanners

2/16

Spanners

2/16

Spanners

2/16

Spanners

Definition (Additive tree k-spanner)

3/16

Spanners

Definition (Additive tree k-spanner)
Let H be a subgraph of a graph G.

3/16

Spanners

Definition (Additive tree k-spanner)

Let H be a subgraph of a graph G.
o H is k-additive if
dH(U, V) < dG(U, V) +k

for every two vertices u and v of H.

3/16

Spanners

Definition (Additive tree k-spanner)
Let H be a subgraph of a graph G.
o H is k-additive if
du(u,v) < dg(u,v) + k
for every two vertices u and v of H.

@ H is an additive k-spanner if H is spanning and k-additive.

3/16

Spanners

Definition (Additive tree k-spanner)
Let H be a subgraph of a graph G.
@ H is k-additive if
du(u,v) < dg(u,v)+ k
for every two vertices u and v of H.
@ H is an additive k-spanner if H is spanning and k-additive.

@ H is an additive tree k-spanner if H is a tree and an additive
k-spanner.

3/16

Spanners

Definition (Additive tree k-spanner)
Let H be a subgraph of a graph G.
@ H is k-additive if
du(u,v) < dg(u,v)+ k
for every two vertices u and v of H.
@ H is an additive k-spanner if H is spanning and k-additive.

@ H is an additive tree k-spanner if H is a tree and an additive
k-spanner.

Replacing
“dH(Uv V) < dG(”? V) + K"

with
“dy(u,v) < k-dg(u,v)’
yields the multiplicative versions.

3/16

Tree breadth

4/16

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

4/16

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

4/16

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

max{dg(u, v)iveE U}

4/16

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

min { max{dg(u, v)iveE U} Tu€ V(G)}.

4/16

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

radg(U) = min { max{dg(u, v):iveE U} Tu€ V(G)}.

4/16

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

radg(U) = min { max{dg(u, v):iveE U} Tu€ V(G)}.

4/16

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

radg(U) = min { max{dg(u, v):iveE U} Tu€ V(G)}.

4/16

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

radg(U) = min { max{dg(u, v):iveE U} Tu€ V(G)}.

4/16

Tree breadth

For a set U of vertices of a graph G, the radius of U in G is

radg(U) = min { max{dg(u, v):iveE U} Tu€ V(G)}.

4/16

Tree breadth

Definition (Dragan and Kohler 2014)

5/16

Tree breadth

Definition (Dragan and Kohler 2014)

The breadth of a tree decomposition (T, (X:):ev(r)) of a connected
graph G is
max {radg(Xt) ‘te V(T)}.

5/16

Tree breadth

Definition (Dragan and Kdhler 2014)

The breadth of a tree decomposition (T, (X:):ev(r)) of a connected
graph G is
max {radg(Xt) ‘te V(T)}.

The tree breadth th(G) of G is the minimum breadth of a tree
decomposition of G.

5/16

Tree breadth

Definition (Dragan and Kdhler 2014)

The breadth of a tree decomposition (T, (X:):ev(r)) of a connected
graph G is
max {radg(Xt) ‘te V(T)}.

The tree breadth th(G) of G is the minimum breadth of a tree
decomposition of G.

o (Ducoffe, Legay, and Nisse 2019)
Tree breadth is NP-hard.

5/16

Tree breadth

Definition (Dragan and Kdhler 2014)

The breadth of a tree decomposition (T, (X:):ev(r)) of a connected
graph G is
max {radg(Xt) ‘te V(T)}.

The tree breadth th(G) of G is the minimum breadth of a tree
decomposition of G.

o (Ducoffe, Legay, and Nisse 2019)
Tree breadth is NP-hard.

@ (Dourisboure and Gavoille 2007, for tree length)
A tree decomposition of breadth at most 6tb(G) + 1 can be found in

linear time.

5/16

Tree breadth = spanners

6/16

Tree breadth = spanners

Let G be a connected graph of order n, size m, and tree breadth p.

Theorem (Dragan and Kdéhler 2014)

Given G as above, one can construct in time O(mlogn) a
multiplicative tree O(p log n)-spanner of G.

6/16

Tree breadth = spanners

Let G be a connected graph of order n, size m, and tree breadth p.

Theorem (Dragan and Kdéhler 2014)

Given G as above, one can construct in time O(mlogn) a
multiplicative tree O(p log n)-spanner of G.

Theorem (Dragan and Abu-Ata 2014)

Given G as above, one can efficiently construct a collection of O(log n)
collective additive tree O(p log n)-spanners,

6/16

Tree breadth = spanners

Let G be a connected graph of order n, size m, and tree breadth p.

Theorem (Dragan and Kdéhler 2014)

Given G as above, one can construct in time O(mlogn) a
multiplicative tree O(p log n)-spanner of G.

Theorem (Dragan and Abu-Ata 2014)

Given G as above, one can efficiently construct a collection of O(log n)
collective additive tree O(p log n)-spanners,
that is, spanning trees T1,. .., To(log n)

6/16

Tree breadth = spanners
Let G be a connected graph of order n, size m, and tree breadth p.

Theorem (Dragan and Kdéhler 2014)

Given G as above, one can construct in time O(mlogn) a
multiplicative tree O(p log n)-spanner of G.

Theorem (Dragan and Abu-Ata 2014)

Given G as above, one can efficiently construct a collection of O(log n)
collective additive tree O(p log n)-spanners,

that is, spanning trees Ty, ..., To(ogn) Such that, for every two vertices u
and v of G,

6/16

Tree breadth = spanners
Let G be a connected graph of order n, size m, and tree breadth p.

Theorem (Dragan and Kdéhler 2014)

Given G as above, one can construct in time O(mlogn) a
multiplicative tree O(plog n)-spanner of G.

Theorem (Dragan and Abu-Ata 2014)

Given G as above, one can efficiently construct a collection of O(log n)
collective additive tree O(plog n)-spanners,

that is, spanning trees Ty, ..., To(ogn) Such that, for every two vertices u

and v of G, there is some tree T; with

6/16

Tree breadth = spanners
Let G be a connected graph of order n, size m, and tree breadth p.

Theorem (Dragan and Kdéhler 2014)

Given G as above, one can construct in time O(mlogn) a
multiplicative tree O(plog n)-spanner of G.

Theorem (Dragan and Abu-Ata 2014)

Given G as above, one can efficiently construct a collection of O(log n)
collective additive tree O(plog n)-spanners,

that is, spanning trees Ty, ..., To(ogn) Such that, for every two vertices u

and v of G, there is some tree T; with

dr.(u,v) < dg(u,v)+ O(plog n).

6/16

Tree breadth = spanners
Theorem (Bendele and R 2020)

Given G as above, one can construct in time O(m log n) an
additive tree O(plog n)-spanner of G.

7/16

Tree breadth = spanners
Theorem (Bendele and R 2020)

Given G as above, one can construct in time O(m log n) an
additive tree O(plog n)-spanner of G.

Figure: The graph Gs.

7/16

Tree breadth = spanners
Theorem (Bendele and R 2020)

Given G as above, one can construct in time O(m log n) an
additive tree O(plog n)-spanner of G.

Figure: The graph Gs.

(Kratsch, Le, Miiller, Prisner, and Wagner 2002)
Gk admits no additive tree th(Gy) log, (@)—spanner

7/16

Tree breadth = spanners
Theorem (Bendele and R 2020)

Given G as above, one can construct in time O(m log n) an
additive tree O(plog n)-spanner of G.

Figure: The graph Gs.

(Kratsch, Le, Miiller, Prisner, and Wagner 2002)
Gk admits no additive tree th(Gy) log, ((Gk)> -spanner but tb(Gk) = 1.

7/16

Tree breadth = spanners

8/16

Tree breadth = spanners

For a tree T, let pbt(T) be the maximum depth of a perfect binary tree
that is a topological minor of T.

8/16

Tree breadth = spanners

For a tree T, let pbt(T) be the maximum depth of a perfect binary tree
that is a topological minor of T.

8/16

Tree breadth = spanners

For a tree T, let pbt(T) be the maximum depth of a perfect binary tree
that is a topological minor of T.

8/16

Tree breadth = spanners

For a tree T, let pbt(T) be the maximum depth of a perfect binary tree
that is a topological minor of T.

= 3 < pbt(T)

8/16

Tree breadth = spanners

For a tree T, let pbt(T) be the maximum depth of a perfect binary tree
that is a topological minor of T.

S

= 3 < pbt(T) < O(log(n(T))).

8/16

Tree breadth = spanners

Theorem (Bendele and R 2020)

Given G and tree decomposition (T, (X:)iev(t)) of G of breadth p, one
can construct in time O(m - pbt(T)) an

additive tree O(p - pbt(T))-spanner of G.

9/16

Tree breadth = spanners

Theorem (Bendele and R 2020)

Given G and tree decomposition (T, (X:)iev(t)) of G of breadth p, one
can construct in time O(m - pbt(T)) an

additive tree O(p - pbt(T))-spanner of G.

Corollary (Bendele and R 2020)
Given G and given a

multiplicative tree k-spanner T of G,
one can construct in time O(mn) an

additive tree O(k log n(G))-spanner of G.

9/16

Tree breadth = spanners

@ Allowing more edges leads to better spanners...

10/16

Tree breadth = spanners

@ Allowing more edges leads to better spanners...

(Dourisboure, Dragan, Gavoille, and Yan 2007)
G has an additive O(p)-spanner with O(pn) edges.

10/16

Tree breadth = spanners

@ Allowing more edges leads to better spanners...

(Dourisboure, Dragan, Gavoille, and Yan 2007)
G has an additive O(p)-spanner with O(pn) edges.

@ Good additive tree spanners for special graphs.

10/16

Tree breadth = spanners

@ Allowing more edges leads to better spanners...

(Dourisboure, Dragan, Gavoille, and Yan 2007)
G has an additive O(p)-spanner with O(pn) edges.

@ Good additive tree spanners for special graphs.

10/16

Proofs

For a tree T, let L(T) be the set of leaves of T.

11/16

Proofs

For a tree T, let L(T) be the set of leaves of T.

Lemma (Bendele and R 2020)
Given G, a subtree S of G, and a set U of vertices of G,

11/16

Proofs
For a tree T, let L(T) be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S" of G such that

11/16

Proofs
For a tree T, let L(T) be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S" of G such that

e SCS and UC V(S),

11/16

Proofs
For a tree T, let L(T) be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S' of G such that

e SCS andUC V(S),
o ds/(u, V(S)) = dg(u, V(S)) for every vertex u in U, and

11/16

Proofs
For a tree T, let L(T) be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S' of G such that

e SCS andUC V(S),

o ds/(u, V(S)) = dg(u, V(S)) for every vertex u in U, and
o L(S")CL(S)uUU.

11/16

Proofs
For a tree T, let L(T) be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S" of G such that

e SCS andUC V(S),

o ds/(u, V(S)) = dg(u, V(S)) for every vertex u in U, and

o L(S)CL(S)UU.

Proof.
Contract S to r,

11/16

Proofs
For a tree T, let L(T) be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S" of G such that

e SCS andUC V(S),

o ds/(u, V(S)) = dg(u, V(S)) for every vertex u in U, and

o L(S)CL(S)UU.

Proof.

Contract S to r, breadth first search from r,

11/16

Proofs
For a tree T, let L(T) be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S" of G such that

e SCS andUC V(S),

o ds/(u, V(S)) = dg(u, V(S)) for every vertex u in U, and

o L(S)CL(S)UU.

Proof.

Contract S to r, breadth first search from r, uncontract S.

11/16

Proofs
For a tree T, let L(T) be the set of leaves of T.

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S" of G such that

e SCS andUC V(S),

o ds/(u, V(S)) = dg(u, V(S)) for every vertex u in U, and

o L(S)CL(S)UU.

Proof.

Contract S to r, breadth first search from r, uncontract S.

11/16

Proofs

Inspired by a lemma of Kratsch, Le, Miiller, Prisner, and Wagner (2002):

12/16

Proofs

Inspired by a lemma of Kratsch, Le, Miiller, Prisner, and Wagner (2002):

Lemma (Bendele and R 2020)
Given G and a p-additive subtree S of G such that

dc(u, V(S)) < p’ for every vertex u of G,

12/16

Proofs

Inspired by a lemma of Kratsch, Le, Miiller, Prisner, and Wagner (2002):

Lemma (Bendele and R 2020)
Given G and a p-additive subtree S of G such that
dc(u, V(S)) < p’ for every vertex u of G,

one can construct in time O(m) an
additive tree (p + 4p')-spanner of G.

12/16

Proofs
Proof.

13/16

Proofs
Proof.

e

u

13/16

Proofs
Proof.

e

u

ds/(u, v)

13/16

Proofs
Proof.

e

ds/(u,v) = dsi(u,u')+ds(u',v')+ds/(V/,v)

13/16

Proofs

Proof.
S
p ‘l
v
u
ds/(u,v) = dsi(u,u')+ds(u',v')+ds/(V/,v)
S /

p

13/16

Proofs

Proof.
S
p ‘l
v
u
ds/(u,v) = dsi(u,u')+ds(u',v')+ds/(V/,v)

< o+ (ds(d, V) +p)

13/16

Proofs

Proof.
S
p ‘l
v
u
ds/(u,v) = dsi(u,u')+ds(u',v')+ds/(V/,v)

< p+(ds(d, V) +p) +

13/16

Proofs
Proof.

. T2

ds/(u, u') + ds(u', V') + ds/ (V' v)
p'+ (de(v', V') +p) + o'
p+2p

ds/(u, v)

VANVAN

13/16

Proofs
Proof.

Aar

ds/(u,v) = dsi(u,u')+ds(u',v')+ds/(V/,v)
< P+ (de(u', V') +p) + 0
< p+20 +de(v',u) + dg(u, v) + dg(v, V')

13/16

Proofs

Proof.
S
g ‘.
4
u
ds/(u,v) = dsi(u,u')+ds(u',v')+ds/(V/,v)
< P+ (de(u', V') +p) + 0
< p+20 +de(v',u) + dg(u, v) + dg(v, V')
< p+2/

13/16

Proofs

Proof.
S
g ‘.
v
u
ds/(u,v) = dsi(u,u')+ds(u',v')+ds/(V/,v)
< P+ (de(u', V') +p) + 0
< p+20 +de(v',u) + dg(u, v) + dg(v, V')
< p+20+/p

13/16

Proofs
Proof.

Aar

ds/(u, u') + ds(u', V') + ds/ (V' v)

p'+ (de(v', V') +p) + o'

p+2p +dg(v,u)+ dg(u,v) + dg(v,V)
p+20 +p +de(u,v)

ds/(u, v)

VAN VANVAN

13/16

Proofs
Proof.

Aar

ds/(u, u') + ds(u', V') + ds/ (V' v)

p'+ (de(v', V') +p) + o'

p+2p +dg(v,u)+ dg(u,v) + dg(v,V)
p+20 +p +de(u,v)+p

ds/(u, v)

VAN VANVAN

13/16

Proofs
Proof.

Aar

ds/(u, u') + ds(u', V') + ds/ (V' v)

p'+ (de(v', V') +p) + o'

p+2p +dg(v,u)+ dg(u,v) + dg(v,V)
p+20 +p +de(u,v)+p

p+4p +dg(u,v),

ds/(u, v)

(VAN VAN VAN VAN

13/16

Proofs
Proof.

Aar

ds/(u, u') + ds(u', V') + ds/ (V' v)

p'+ (de(v', V') +p) + o'

p+2p +dg(v,u)+ dg(u,v) + dg(v,V)
p+20 +p +de(u,v)+p

p+4p +dg(u,v),

ds/(u, v)

(VAN VAN VAN VAN

13/16

Proofs

14/16

Proofs
Let T be a tree.

14/16

Proofs
Let T be a tree.

14/16

Proofs
Let T be a tree.

14/16

Proofs
Let T be a tree.

14/16

Proofs
Let T be a tree.

To

14/16

Proofs
Let T be a tree.

ToD T1

14/16

Proofs
Let T be a tree.

ToDTlDTz

14/16

Proofs
Let T be a tree.

ToDTiDT2D...D Ty,

14/16

Proofs

Let T be a tree.

where
o To=T.

ToDTiDT2D...D Ty,

14/16

Proofs
Let T be a tree.

ToDTiDT2D...D Ty,

where
o To=T.
o If T; # Py, then T;11 C T; minimal with all branch vertices of T;.

14/16

Proofs
Let T be a tree.

ToDTiDT2D...D Ty,
where
o To=T.
o If T; # Py, then T;11 C T; minimal with all branch vertices of T;.
o If T; = Py for £ > 3, then let T;11 C T; have order 1.

14/16

Proofs
Let T be a tree.

ToDTiDT2D...D Ty,
where
o To=T.
o If T; # Py, then T;11 C T; minimal with all branch vertices of T;.
o If T; = Py for £ > 3, then let T;11 C T; have order 1.
o If T; = Py for £ <2, then terminate; d(T) « i.

14/16

Proofs
Let T be a tree.

To>T1iD>DT,D>...D Td(T),
where
o To=T.
o If T; # Py, then T;11 C T; minimal with all branch vertices of T;.
o If T; = Py for £ > 3, then let T;11 C T; have order 1.
o If T; = Py for £ <2, then terminate; d(T) « i.

Lemma (Bendele and R 2020)
pbt(T) = d(T) for every tree T. J

14/16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)teV(T)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G

15/16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)teV(T)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

15/16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)teV(T)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.
ToDT1iDTrD...D Ty

15/16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)te V(-,-)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

ToD T1DTrD...D Ty. For i from d down to 0, construct a subtree S;
of G

15/16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)te V(-,-)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

ToD>T1i D ToD...D Ty4. For i from d down to 0, construct a subtree S;
of G such that

@ S; contains a vertex from bag X; for every vertex t of T;,

15/16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)te V(-,-)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

ToD>T1i D ToD...D Ty4. For i from d down to 0, construct a subtree S;
of G such that

@ S; contains a vertex from bag X; for every vertex t of T;,
e S;is 16p(d — i)-additive.

15/16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)te V(-,-)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

ToD>T1i D ToD...D Ty4. For i from d down to 0, construct a subtree S;
of G such that

@ S; contains a vertex from bag X; for every vertex t of T;,
e S;is 16p(d — i)-additive.
n(Sd) < 2.

15/16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)te V(-,-)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

ToD>T1i D ToD...D Ty4. For i from d down to 0, construct a subtree S;
of G such that

@ S; contains a vertex from bag X; for every vertex t of T;,
e S;is 16p(d — i)-additive.
n(Sd) <2 S 50.

15/16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition (T, (Xt)te V(-,-)) of breadth p, one can
construct in time O(m-d(T)) a 16pd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

ToD>T1i D ToD...D Ty4. For i from d down to 0, construct a subtree S;
of G such that

@ S; contains a vertex from bag X; for every vertex t of T;,
e S;is 16p(d — i)-additive.
n(Sd) <2 S 50. L]

15/16

Thank you for the attention!

16/16

