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Spanners

Definition (Additive tree k-spanner)

Let H be a subgraph of a graph G .

H is k-additive if
dH(u, v) ≤ dG (u, v) + k

for every two vertices u and v of H.

H is an additive k-spanner if H is spanning and k-additive.

H is an additive tree k-spanner if H is a tree and an additive
k-spanner.

Replacing
“dH(u, v) ≤ dG (u, v) + k ′′

with
“dH(u, v) ≤ k · dG (u, v)′′

yields the multiplicative versions.
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Tree breadth

For a set U of vertices of a graph G , the radius of U in G is

radG (U) = min
{

max
{
dG (u, v) : v ∈ U

}
: u ∈ V (G )

}
.
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Tree breadth

Definition (Dragan and Köhler 2014)

The breadth of a tree decomposition
(
T , (Xt)t∈V (T )

)
of a connected

graph G is

max
{
radG (Xt) : t ∈ V (T )

}
.

The tree breadth tb(G ) of G is the minimum breadth of a tree
decomposition of G .

(Ducoffe, Legay, and Nisse 2019)
Tree breadth is NP-hard.

(Dourisboure and Gavoille 2007, for tree length)
A tree decomposition of breadth at most 6tb(G ) + 1 can be found in
linear time.
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Tree breadth ⇒ spanners

Let G be a connected graph of order n, size m, and tree breadth ρ.

Theorem (Dragan and Köhler 2014)

Given G as above, one can construct in time O(m log n) a
multiplicative tree O(ρ log n)-spanner of G .

Theorem (Dragan and Abu-Ata 2014)

Given G as above, one can efficiently construct a collection of O(log n)
collective additive tree O(ρ log n)-spanners,

that is, spanning trees T1, . . . ,TO(log n) such that, for every two vertices u
and v of G , there is some tree Ti with

dTi
(u, v) ≤ dG (u, v) + O(ρ log n).
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Given G as above, one can construct in time O(m log n) a
multiplicative tree O(ρ log n)-spanner of G .

Theorem (Dragan and Abu-Ata 2014)

Given G as above, one can efficiently construct a collection of O(log n)
collective additive tree O(ρ log n)-spanners,

that is, spanning trees T1, . . . ,TO(log n) such that, for every two vertices u
and v of G ,

there is some tree Ti with

dTi
(u, v) ≤ dG (u, v) + O(ρ log n).

6 / 16



Tree breadth ⇒ spanners

Let G be a connected graph of order n, size m, and tree breadth ρ.

Theorem (Dragan and Köhler 2014)
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Tree breadth ⇒ spanners

Theorem (Bendele and R 2020)

Given G as above, one can construct in time O
(
m log n

)
an

additive tree O
(
ρ log n

)
-spanner of G .

Figure: The graph G3.

(Kratsch, Le, Müller, Prisner, and Wagner 2002)

Gk admits no additive tree tb(Gk) log2

(
n(Gk )

3

)
-spanner but tb(Gk) = 1.
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Tree breadth ⇒ spanners

For a tree T , let pbt(T ) be the maximum depth of a perfect binary tree
that is a topological minor of T .

⇒ 3 ≤ pbt(T ) ≤ O(log(n(T ))).
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Tree breadth ⇒ spanners

Theorem (Bendele and R 2020)

Given G and tree decomposition
(
T , (Xt)t∈V (T )

)
of G of breadth ρ, one

can construct in time O
(
m · pbt(T )

)
an

additive tree O
(
ρ · pbt(T )

)
-spanner of G .

Corollary (Bendele and R 2020)

Given G and given a
multiplicative tree k-spanner T of G ,

one can construct in time O
(
mn
)

an
additive tree O

(
k log n(G )

)
-spanner of G .
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Tree breadth ⇒ spanners

Allowing more edges leads to better spanners...

(Dourisboure, Dragan, Gavoille, and Yan 2007)
G has an additive O(ρ)-spanner with O(ρn) edges.

Good additive tree spanners for special graphs.

...
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Proofs

For a tree T , let L(T ) be the set of leaves of T .

Lemma (Bendele and R 2020)

Given G , a subtree S of G , and a set U of vertices of G , one can
construct in time O(m) a subtree S ′ of G such that

S ⊆ S ′ and U ⊆ V (S ′),

dS ′(u,V (S)) = dG (u,V (S)) for every vertex u in U, and

L(S ′) ⊆ L(S) ∪ U.

Proof.

Contract S to r , breadth first search from r , uncontract S .
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Proofs

Let T be a tree.

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td(T ),

where

T0 = T .

If Ti 6= P`, then Ti+1 ⊆ Ti minimal with all branch vertices of Ti .

If Ti = P` for ` ≥ 3, then let Ti+1 ⊆ Ti have order 1.

If Ti = P` for ` ≤ 2, then terminate; d(T )← i .

Lemma (Bendele and R 2020)

pbt(T ) = d(T ) for every tree T .
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Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition
(
T , (Xt)t∈V (T )

)
of breadth ρ, one can

construct in time O(m · d(T )) a 16ρd(T )-additive subtree S of G

intersecting each bag of the given tree-decomposition.

Proof.

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td . For i from d down to 0, construct a subtree Si
of G such that

Si contains a vertex from bag Xt for every vertex t of Ti ,

Si is 16ρ(d − i)-additive.

n(Sd) ≤ 2. S ← S0.
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Thank you for the attention!
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