
Additive Tree O(ρ log n)-Spanners from Tree Breadth ρ

Dieter Rautenbach

Universität Ulm

Joint with Oliver Bendele

1 / 16

Additive Tree O(ρ log n)-Spanners from Tree Breadth ρ

Dieter Rautenbach

Universität Ulm

Joint with Oliver Bendele

1 / 16

Spanners

s

s
ss
s

s
s
s s

ss
s ss
s

s

s s

s s
s

ss s
s s
s

s

s

s s

2 / 16

Spanners

s

s
ss
s

s
s
s s

ss
s ss
s

s

s s

s s
s

ss s
s s
s

s

s

s s

T
T
T
T

�
�
�
�

�
�
�
�T
T
T
T

b
b
bb

�
�
�
�
�
�

J
J
JJ

e
ee

�
�
�

�
�
�

J
J
JJ

�
�
�
�

2 / 16

Spanners

s

s
ss
s

s
s
s s

ss
s ss
s

s

s s

s s
s

ss s
s s
s

s

s

s s

�
�
�
�T
T
T
T

b
b
bb

�
�
�
�
�
�

J
J
JJ

e
ee

�
�
�

�
�
�

J
J
JJ

�
�
�
�

2 / 16

Spanners

s

s
ss
s

s
s
s s

ss
s ss
s

s

s s

s s
s

ss s
s s
s

s

s

s s

�
�
�
�T
T
T
T

b
b
bb

�
�
�
�
�
�

J
J
JJ

e
ee

�
�
�

�
�
�

J
J
JJ

�
�
�
�

2 / 16

Spanners

Definition (Additive tree k-spanner)

Let H be a subgraph of a graph G .

H is k-additive if
dH(u, v) ≤ dG (u, v) + k

for every two vertices u and v of H.

H is an additive k-spanner if H is spanning and k-additive.

H is an additive tree k-spanner if H is a tree and an additive
k-spanner.

Replacing
“dH(u, v) ≤ dG (u, v) + k ′′

with
“dH(u, v) ≤ k · dG (u, v)′′

yields the multiplicative versions.

3 / 16

Spanners

Definition (Additive tree k-spanner)

Let H be a subgraph of a graph G .

H is k-additive if
dH(u, v) ≤ dG (u, v) + k

for every two vertices u and v of H.

H is an additive k-spanner if H is spanning and k-additive.

H is an additive tree k-spanner if H is a tree and an additive
k-spanner.

Replacing
“dH(u, v) ≤ dG (u, v) + k ′′

with
“dH(u, v) ≤ k · dG (u, v)′′

yields the multiplicative versions.

3 / 16

Spanners

Definition (Additive tree k-spanner)

Let H be a subgraph of a graph G .

H is k-additive if
dH(u, v) ≤ dG (u, v) + k

for every two vertices u and v of H.

H is an additive k-spanner if H is spanning and k-additive.

H is an additive tree k-spanner if H is a tree and an additive
k-spanner.

Replacing
“dH(u, v) ≤ dG (u, v) + k ′′

with
“dH(u, v) ≤ k · dG (u, v)′′

yields the multiplicative versions.

3 / 16

Spanners

Definition (Additive tree k-spanner)

Let H be a subgraph of a graph G .

H is k-additive if
dH(u, v) ≤ dG (u, v) + k

for every two vertices u and v of H.

H is an additive k-spanner if H is spanning and k-additive.

H is an additive tree k-spanner if H is a tree and an additive
k-spanner.

Replacing
“dH(u, v) ≤ dG (u, v) + k ′′

with
“dH(u, v) ≤ k · dG (u, v)′′

yields the multiplicative versions.

3 / 16

Spanners

Definition (Additive tree k-spanner)

Let H be a subgraph of a graph G .

H is k-additive if
dH(u, v) ≤ dG (u, v) + k

for every two vertices u and v of H.

H is an additive k-spanner if H is spanning and k-additive.

H is an additive tree k-spanner if H is a tree and an additive
k-spanner.

Replacing
“dH(u, v) ≤ dG (u, v) + k ′′

with
“dH(u, v) ≤ k · dG (u, v)′′

yields the multiplicative versions.

3 / 16

Spanners

Definition (Additive tree k-spanner)

Let H be a subgraph of a graph G .

H is k-additive if
dH(u, v) ≤ dG (u, v) + k

for every two vertices u and v of H.

H is an additive k-spanner if H is spanning and k-additive.

H is an additive tree k-spanner if H is a tree and an additive
k-spanner.

Replacing
“dH(u, v) ≤ dG (u, v) + k ′′

with
“dH(u, v) ≤ k · dG (u, v)′′

yields the multiplicative versions.

3 / 16

Tree breadth

For a set U of vertices of a graph G , the radius of U in G is

radG (U) = min
{

max
{
dG (u, v) : v ∈ U

}
: u ∈ V (G)

}
.

'

&

$

%
Uu r

6

?

4 / 16

Tree breadth
For a set U of vertices of a graph G , the radius of U in G is

radG (U) = min
{

max
{
dG (u, v) : v ∈ U

}
: u ∈ V (G)

}
.

'

&

$

%
Uu r

6

?

4 / 16

Tree breadth
For a set U of vertices of a graph G , the radius of U in G is

radG (U) = min
{

max
{
dG (

u

, v) : v ∈ U
}

: u ∈ V (G)
}
.

'

&

$

%
Uu r

6

?

4 / 16

Tree breadth
For a set U of vertices of a graph G , the radius of U in G is

radG (U) = min
{

max
{
dG (u, v) : v ∈ U

}

: u ∈ V (G)
}
.

'

&

$

%
Uu r

6

?

4 / 16

Tree breadth
For a set U of vertices of a graph G , the radius of U in G is

radG (U) =

min
{

max
{
dG (u, v) : v ∈ U

}
: u ∈ V (G)

}
.

'

&

$

%
Uu r

6

?

4 / 16

Tree breadth
For a set U of vertices of a graph G , the radius of U in G is

radG (U) = min
{

max
{
dG (u, v) : v ∈ U

}
: u ∈ V (G)

}
.

'

&

$

%
Uu r

6

?

4 / 16

Tree breadth
For a set U of vertices of a graph G , the radius of U in G is

radG (U) = min
{

max
{
dG (u, v) : v ∈ U

}
: u ∈ V (G)

}
.

'

&

$

%
U

u r

6

?

4 / 16

Tree breadth
For a set U of vertices of a graph G , the radius of U in G is

radG (U) = min
{

max
{
dG (u, v) : v ∈ U

}
: u ∈ V (G)

}
.

'

&

$

%
Uu r

6

?

4 / 16

Tree breadth
For a set U of vertices of a graph G , the radius of U in G is

radG (U) = min
{

max
{
dG (u, v) : v ∈ U

}
: u ∈ V (G)

}
.

'

&

$

%
Uu r

6

?

4 / 16

Tree breadth
For a set U of vertices of a graph G , the radius of U in G is

radG (U) = min
{

max
{
dG (u, v) : v ∈ U

}
: u ∈ V (G)

}
.

'

&

$

%
Uu r

6

?

4 / 16

Tree breadth

Definition (Dragan and Köhler 2014)

The breadth of a tree decomposition
(
T , (Xt)t∈V (T)

)
of a connected

graph G is

max
{
radG (Xt) : t ∈ V (T)

}
.

The tree breadth tb(G) of G is the minimum breadth of a tree
decomposition of G .

(Ducoffe, Legay, and Nisse 2019)
Tree breadth is NP-hard.

(Dourisboure and Gavoille 2007, for tree length)
A tree decomposition of breadth at most 6tb(G) + 1 can be found in
linear time.

5 / 16

Tree breadth

Definition (Dragan and Köhler 2014)

The breadth of a tree decomposition
(
T , (Xt)t∈V (T)

)
of a connected

graph G is

max
{
radG (Xt) : t ∈ V (T)

}
.

The tree breadth tb(G) of G is the minimum breadth of a tree
decomposition of G .

(Ducoffe, Legay, and Nisse 2019)
Tree breadth is NP-hard.

(Dourisboure and Gavoille 2007, for tree length)
A tree decomposition of breadth at most 6tb(G) + 1 can be found in
linear time.

5 / 16

Tree breadth

Definition (Dragan and Köhler 2014)

The breadth of a tree decomposition
(
T , (Xt)t∈V (T)

)
of a connected

graph G is

max
{
radG (Xt) : t ∈ V (T)

}
.

The tree breadth tb(G) of G is the minimum breadth of a tree
decomposition of G .

(Ducoffe, Legay, and Nisse 2019)
Tree breadth is NP-hard.

(Dourisboure and Gavoille 2007, for tree length)
A tree decomposition of breadth at most 6tb(G) + 1 can be found in
linear time.

5 / 16

Tree breadth

Definition (Dragan and Köhler 2014)

The breadth of a tree decomposition
(
T , (Xt)t∈V (T)

)
of a connected

graph G is

max
{
radG (Xt) : t ∈ V (T)

}
.

The tree breadth tb(G) of G is the minimum breadth of a tree
decomposition of G .

(Ducoffe, Legay, and Nisse 2019)
Tree breadth is NP-hard.

(Dourisboure and Gavoille 2007, for tree length)
A tree decomposition of breadth at most 6tb(G) + 1 can be found in
linear time.

5 / 16

Tree breadth

Definition (Dragan and Köhler 2014)

The breadth of a tree decomposition
(
T , (Xt)t∈V (T)

)
of a connected

graph G is

max
{
radG (Xt) : t ∈ V (T)

}
.

The tree breadth tb(G) of G is the minimum breadth of a tree
decomposition of G .

(Ducoffe, Legay, and Nisse 2019)
Tree breadth is NP-hard.

(Dourisboure and Gavoille 2007, for tree length)
A tree decomposition of breadth at most 6tb(G) + 1 can be found in
linear time.

5 / 16

Tree breadth ⇒ spanners

Let G be a connected graph of order n, size m, and tree breadth ρ.

Theorem (Dragan and Köhler 2014)

Given G as above, one can construct in time O(m log n) a
multiplicative tree O(ρ log n)-spanner of G.

Theorem (Dragan and Abu-Ata 2014)

Given G as above, one can efficiently construct a collection of O(log n)
collective additive tree O(ρ log n)-spanners,

that is, spanning trees T1, . . . ,TO(log n) such that, for every two vertices u
and v of G, there is some tree Ti with

dTi
(u, v) ≤ dG (u, v) + O(ρ log n).

6 / 16

Tree breadth ⇒ spanners

Let G be a connected graph of order n, size m, and tree breadth ρ.

Theorem (Dragan and Köhler 2014)

Given G as above, one can construct in time O(m log n) a
multiplicative tree O(ρ log n)-spanner of G.

Theorem (Dragan and Abu-Ata 2014)

Given G as above, one can efficiently construct a collection of O(log n)
collective additive tree O(ρ log n)-spanners,

that is, spanning trees T1, . . . ,TO(log n) such that, for every two vertices u
and v of G, there is some tree Ti with

dTi
(u, v) ≤ dG (u, v) + O(ρ log n).

6 / 16

Tree breadth ⇒ spanners

Let G be a connected graph of order n, size m, and tree breadth ρ.

Theorem (Dragan and Köhler 2014)

Given G as above, one can construct in time O(m log n) a
multiplicative tree O(ρ log n)-spanner of G.

Theorem (Dragan and Abu-Ata 2014)

Given G as above, one can efficiently construct a collection of O(log n)
collective additive tree O(ρ log n)-spanners,

that is, spanning trees T1, . . . ,TO(log n) such that, for every two vertices u
and v of G, there is some tree Ti with

dTi
(u, v) ≤ dG (u, v) + O(ρ log n).

6 / 16

Tree breadth ⇒ spanners

Let G be a connected graph of order n, size m, and tree breadth ρ.

Theorem (Dragan and Köhler 2014)

Given G as above, one can construct in time O(m log n) a
multiplicative tree O(ρ log n)-spanner of G.

Theorem (Dragan and Abu-Ata 2014)

Given G as above, one can efficiently construct a collection of O(log n)
collective additive tree O(ρ log n)-spanners,

that is, spanning trees T1, . . . ,TO(log n)

such that, for every two vertices u
and v of G, there is some tree Ti with

dTi
(u, v) ≤ dG (u, v) + O(ρ log n).

6 / 16

Tree breadth ⇒ spanners

Let G be a connected graph of order n, size m, and tree breadth ρ.

Theorem (Dragan and Köhler 2014)

Given G as above, one can construct in time O(m log n) a
multiplicative tree O(ρ log n)-spanner of G.

Theorem (Dragan and Abu-Ata 2014)

Given G as above, one can efficiently construct a collection of O(log n)
collective additive tree O(ρ log n)-spanners,

that is, spanning trees T1, . . . ,TO(log n) such that, for every two vertices u
and v of G,

there is some tree Ti with

dTi
(u, v) ≤ dG (u, v) + O(ρ log n).

6 / 16

Tree breadth ⇒ spanners

Let G be a connected graph of order n, size m, and tree breadth ρ.

Theorem (Dragan and Köhler 2014)

Given G as above, one can construct in time O(m log n) a
multiplicative tree O(ρ log n)-spanner of G.

Theorem (Dragan and Abu-Ata 2014)

Given G as above, one can efficiently construct a collection of O(log n)
collective additive tree O(ρ log n)-spanners,

that is, spanning trees T1, . . . ,TO(log n) such that, for every two vertices u
and v of G, there is some tree Ti with

dTi
(u, v) ≤ dG (u, v) + O(ρ log n).

6 / 16

Tree breadth ⇒ spanners

Let G be a connected graph of order n, size m, and tree breadth ρ.

Theorem (Dragan and Köhler 2014)

Given G as above, one can construct in time O(m log n) a
multiplicative tree O(ρ log n)-spanner of G.

Theorem (Dragan and Abu-Ata 2014)

Given G as above, one can efficiently construct a collection of O(log n)
collective additive tree O(ρ log n)-spanners,

that is, spanning trees T1, . . . ,TO(log n) such that, for every two vertices u
and v of G, there is some tree Ti with

dTi
(u, v) ≤ dG (u, v) + O(ρ log n).

6 / 16

Tree breadth ⇒ spanners

Theorem (Bendele and R 2020)

Given G as above, one can construct in time O
(
m log n

)
an

additive tree O
(
ρ log n

)
-spanner of G.

Figure: The graph G3.

(Kratsch, Le, Müller, Prisner, and Wagner 2002)

Gk admits no additive tree tb(Gk) log2

(
n(Gk)

3

)
-spanner but tb(Gk) = 1.

7 / 16

Tree breadth ⇒ spanners

Theorem (Bendele and R 2020)

Given G as above, one can construct in time O
(
m log n

)
an

additive tree O
(
ρ log n

)
-spanner of G.

Figure: The graph G3.

(Kratsch, Le, Müller, Prisner, and Wagner 2002)

Gk admits no additive tree tb(Gk) log2

(
n(Gk)

3

)
-spanner but tb(Gk) = 1.

7 / 16

Tree breadth ⇒ spanners

Theorem (Bendele and R 2020)

Given G as above, one can construct in time O
(
m log n

)
an

additive tree O
(
ρ log n

)
-spanner of G.

Figure: The graph G3.

(Kratsch, Le, Müller, Prisner, and Wagner 2002)

Gk admits no additive tree tb(Gk) log2

(
n(Gk)

3

)
-spanner

but tb(Gk) = 1.

7 / 16

Tree breadth ⇒ spanners

Theorem (Bendele and R 2020)

Given G as above, one can construct in time O
(
m log n

)
an

additive tree O
(
ρ log n

)
-spanner of G.

Figure: The graph G3.

(Kratsch, Le, Müller, Prisner, and Wagner 2002)

Gk admits no additive tree tb(Gk) log2

(
n(Gk)

3

)
-spanner but tb(Gk) = 1.

7 / 16

Tree breadth ⇒ spanners

For a tree T , let pbt(T) be the maximum depth of a perfect binary tree
that is a topological minor of T .

⇒ 3 ≤ pbt(T) ≤ O(log(n(T))).

8 / 16

Tree breadth ⇒ spanners

For a tree T , let pbt(T) be the maximum depth of a perfect binary tree
that is a topological minor of T .

r
r
rr
rr

r
r r

rr
r rrr

r
�
�
�T
T
T

b
bb

�
�
�
�

J
JJ

e
e

r r

r r
r
�
��

�
��

rr r
r r
r

r

r

r r

J
JJ

�
�
�

⇒ 3 ≤ pbt(T) ≤ O(log(n(T))).

8 / 16

Tree breadth ⇒ spanners

For a tree T , let pbt(T) be the maximum depth of a perfect binary tree
that is a topological minor of T .

r
r
rr
rr

r
r r

rr
r rrr

r
�
�
�T
T
T

b
bb

�
�
�
�

J
JJ

e
e

r r

r r
r
�
��

�
��

rr r
r r
r

r

r

r r

J
JJ

�
�
�

⇒ 3 ≤ pbt(T) ≤ O(log(n(T))).

8 / 16

Tree breadth ⇒ spanners

For a tree T , let pbt(T) be the maximum depth of a perfect binary tree
that is a topological minor of T .

r
r
rr
rr

r r

rr
r rr

�
�
�T
T
T

b
bb

�
�
�
�

J
JJ

r r
r
�

��

�
��

r
r r
r

d

⇒ 3 ≤ pbt(T) ≤ O(log(n(T))).

8 / 16

Tree breadth ⇒ spanners

For a tree T , let pbt(T) be the maximum depth of a perfect binary tree
that is a topological minor of T .

r
r
rr
rr

r r

rr
r rr

�
�
�T
T
T

b
bb

�
�
�
�

J
JJ

r r
r
�

��

�
��

r
r r
r

d

⇒ 3 ≤ pbt(T)

≤ O(log(n(T))).

8 / 16

Tree breadth ⇒ spanners

For a tree T , let pbt(T) be the maximum depth of a perfect binary tree
that is a topological minor of T .

r
r
rr
rr

r r

rr
r rr

�
�
�T
T
T

b
bb

�
�
�
�

J
JJ

r r
r
�

��

�
��

r
r r
r

d

⇒ 3 ≤ pbt(T) ≤ O(log(n(T))).

8 / 16

Tree breadth ⇒ spanners

Theorem (Bendele and R 2020)

Given G and tree decomposition
(
T , (Xt)t∈V (T)

)
of G of breadth ρ, one

can construct in time O
(
m · pbt(T)

)
an

additive tree O
(
ρ · pbt(T)

)
-spanner of G.

Corollary (Bendele and R 2020)

Given G and given a
multiplicative tree k-spanner T of G,

one can construct in time O
(
mn
)

an
additive tree O

(
k log n(G)

)
-spanner of G.

9 / 16

Tree breadth ⇒ spanners

Theorem (Bendele and R 2020)

Given G and tree decomposition
(
T , (Xt)t∈V (T)

)
of G of breadth ρ, one

can construct in time O
(
m · pbt(T)

)
an

additive tree O
(
ρ · pbt(T)

)
-spanner of G.

Corollary (Bendele and R 2020)

Given G and given a
multiplicative tree k-spanner T of G,

one can construct in time O
(
mn
)

an
additive tree O

(
k log n(G)

)
-spanner of G.

9 / 16

Tree breadth ⇒ spanners

Allowing more edges leads to better spanners...

(Dourisboure, Dragan, Gavoille, and Yan 2007)
G has an additive O(ρ)-spanner with O(ρn) edges.

Good additive tree spanners for special graphs.

...

10 / 16

Tree breadth ⇒ spanners

Allowing more edges leads to better spanners...

(Dourisboure, Dragan, Gavoille, and Yan 2007)
G has an additive O(ρ)-spanner with O(ρn) edges.

Good additive tree spanners for special graphs.

...

10 / 16

Tree breadth ⇒ spanners

Allowing more edges leads to better spanners...

(Dourisboure, Dragan, Gavoille, and Yan 2007)
G has an additive O(ρ)-spanner with O(ρn) edges.

Good additive tree spanners for special graphs.

...

10 / 16

Tree breadth ⇒ spanners

Allowing more edges leads to better spanners...

(Dourisboure, Dragan, Gavoille, and Yan 2007)
G has an additive O(ρ)-spanner with O(ρn) edges.

Good additive tree spanners for special graphs.

...

10 / 16

Proofs

For a tree T , let L(T) be the set of leaves of T .

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S ′ of G such that

S ⊆ S ′ and U ⊆ V (S ′),

dS ′(u,V (S)) = dG (u,V (S)) for every vertex u in U, and

L(S ′) ⊆ L(S) ∪ U.

Proof.

Contract S to r , breadth first search from r , uncontract S .

11 / 16

Proofs

For a tree T , let L(T) be the set of leaves of T .

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G,

one can
construct in time O(m) a subtree S ′ of G such that

S ⊆ S ′ and U ⊆ V (S ′),

dS ′(u,V (S)) = dG (u,V (S)) for every vertex u in U, and

L(S ′) ⊆ L(S) ∪ U.

Proof.

Contract S to r , breadth first search from r , uncontract S .

11 / 16

Proofs

For a tree T , let L(T) be the set of leaves of T .

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S ′ of G such that

S ⊆ S ′ and U ⊆ V (S ′),

dS ′(u,V (S)) = dG (u,V (S)) for every vertex u in U, and

L(S ′) ⊆ L(S) ∪ U.

Proof.

Contract S to r , breadth first search from r , uncontract S .

11 / 16

Proofs

For a tree T , let L(T) be the set of leaves of T .

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S ′ of G such that

S ⊆ S ′ and U ⊆ V (S ′),

dS ′(u,V (S)) = dG (u,V (S)) for every vertex u in U, and

L(S ′) ⊆ L(S) ∪ U.

Proof.

Contract S to r , breadth first search from r , uncontract S .

11 / 16

Proofs

For a tree T , let L(T) be the set of leaves of T .

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S ′ of G such that

S ⊆ S ′ and U ⊆ V (S ′),

dS ′(u,V (S)) = dG (u,V (S)) for every vertex u in U, and

L(S ′) ⊆ L(S) ∪ U.

Proof.

Contract S to r , breadth first search from r , uncontract S .

11 / 16

Proofs

For a tree T , let L(T) be the set of leaves of T .

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S ′ of G such that

S ⊆ S ′ and U ⊆ V (S ′),

dS ′(u,V (S)) = dG (u,V (S)) for every vertex u in U, and

L(S ′) ⊆ L(S) ∪ U.

Proof.

Contract S to r , breadth first search from r , uncontract S .

11 / 16

Proofs

For a tree T , let L(T) be the set of leaves of T .

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S ′ of G such that

S ⊆ S ′ and U ⊆ V (S ′),

dS ′(u,V (S)) = dG (u,V (S)) for every vertex u in U, and

L(S ′) ⊆ L(S) ∪ U.

Proof.

Contract S to r ,

breadth first search from r , uncontract S .

11 / 16

Proofs

For a tree T , let L(T) be the set of leaves of T .

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S ′ of G such that

S ⊆ S ′ and U ⊆ V (S ′),

dS ′(u,V (S)) = dG (u,V (S)) for every vertex u in U, and

L(S ′) ⊆ L(S) ∪ U.

Proof.

Contract S to r , breadth first search from r ,

uncontract S .

11 / 16

Proofs

For a tree T , let L(T) be the set of leaves of T .

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S ′ of G such that

S ⊆ S ′ and U ⊆ V (S ′),

dS ′(u,V (S)) = dG (u,V (S)) for every vertex u in U, and

L(S ′) ⊆ L(S) ∪ U.

Proof.

Contract S to r , breadth first search from r , uncontract S .

11 / 16

Proofs

For a tree T , let L(T) be the set of leaves of T .

Lemma (Bendele and R 2020)

Given G, a subtree S of G, and a set U of vertices of G, one can
construct in time O(m) a subtree S ′ of G such that

S ⊆ S ′ and U ⊆ V (S ′),

dS ′(u,V (S)) = dG (u,V (S)) for every vertex u in U, and

L(S ′) ⊆ L(S) ∪ U.

Proof.

Contract S to r , breadth first search from r , uncontract S .

11 / 16

Proofs

Inspired by a lemma of Kratsch, Le, Müller, Prisner, and Wagner (2002):

Lemma (Bendele and R 2020)

Given G and a ρ-additive subtree S of G such that

dG (u,V (S)) ≤ ρ′ for every vertex u of G,

one can construct in time O(m) an
additive tree (ρ+ 4ρ′)-spanner of G.

12 / 16

Proofs

Inspired by a lemma of Kratsch, Le, Müller, Prisner, and Wagner (2002):

Lemma (Bendele and R 2020)

Given G and a ρ-additive subtree S of G such that

dG (u,V (S)) ≤ ρ′ for every vertex u of G,

one can construct in time O(m) an
additive tree (ρ+ 4ρ′)-spanner of G.

12 / 16

Proofs

Inspired by a lemma of Kratsch, Le, Müller, Prisner, and Wagner (2002):

Lemma (Bendele and R 2020)

Given G and a ρ-additive subtree S of G such that

dG (u,V (S)) ≤ ρ′ for every vertex u of G,

one can construct in time O(m) an
additive tree (ρ+ 4ρ′)-spanner of G.

12 / 16

Proofs

Proof.

#
"

!

S

S ′ r rr r rr r r r r r r
""
PP`̀ �

�
�
�
XXX

A
A HH

u

u′
v ′

v

dS ′(u, v) = dS ′(u, u′) + dS(u′, v ′) + dS ′(v ′, v)

≤ ρ′ + (dG (u′, v ′) + ρ) + ρ′

≤ ρ+ 2ρ′ + dG (u′, u) + dG (u, v) + dG (v , v ′)

≤ ρ+ 2ρ′ + ρ′ + dG (u, v) + ρ′

≤ ρ+ 4ρ′ + dG (u, v),

13 / 16

Proofs

Proof.

#
"

!

S

S ′ r rr r rr r r r r r r
""
PP`̀ �

�
�
�
XXX

A
A HH

u

u′
v ′

v

dS ′(u, v) = dS ′(u, u′) + dS(u′, v ′) + dS ′(v ′, v)

≤ ρ′ + (dG (u′, v ′) + ρ) + ρ′

≤ ρ+ 2ρ′ + dG (u′, u) + dG (u, v) + dG (v , v ′)

≤ ρ+ 2ρ′ + ρ′ + dG (u, v) + ρ′

≤ ρ+ 4ρ′ + dG (u, v),

13 / 16

Proofs

Proof.

#
"

!

S

S ′ r rr r rr r r r r r r
""
PP`̀ �

�
�
�
XXX

A
A HH

u

u′
v ′

v

dS ′(u, v)

= dS ′(u, u′) + dS(u′, v ′) + dS ′(v ′, v)

≤ ρ′ + (dG (u′, v ′) + ρ) + ρ′

≤ ρ+ 2ρ′ + dG (u′, u) + dG (u, v) + dG (v , v ′)

≤ ρ+ 2ρ′ + ρ′ + dG (u, v) + ρ′

≤ ρ+ 4ρ′ + dG (u, v),

13 / 16

Proofs

Proof.

#
"

!

S

S ′ r rr r rr r r r r r r
""
PP`̀ �

�
�
�
XXX

A
A HH

u

u′
v ′

v

dS ′(u, v) = dS ′(u, u′) + dS(u′, v ′) + dS ′(v ′, v)

≤ ρ′ + (dG (u′, v ′) + ρ) + ρ′

≤ ρ+ 2ρ′ + dG (u′, u) + dG (u, v) + dG (v , v ′)

≤ ρ+ 2ρ′ + ρ′ + dG (u, v) + ρ′

≤ ρ+ 4ρ′ + dG (u, v),

13 / 16

Proofs

Proof.

#
"

!

S

S ′ r rr r rr r r r r r r
""
PP`̀ �

�
�
�
XXX

A
A HH

u

u′
v ′

v

dS ′(u, v) = dS ′(u, u′) + dS(u′, v ′) + dS ′(v ′, v)

≤ ρ′

+ (dG (u′, v ′) + ρ) + ρ′

≤ ρ+ 2ρ′ + dG (u′, u) + dG (u, v) + dG (v , v ′)

≤ ρ+ 2ρ′ + ρ′ + dG (u, v) + ρ′

≤ ρ+ 4ρ′ + dG (u, v),

13 / 16

Proofs

Proof.

#
"

!

S

S ′ r rr r rr r r r r r r
""
PP`̀ �

�
�
�
XXX

A
A HH

u

u′
v ′

v

dS ′(u, v) = dS ′(u, u′) + dS(u′, v ′) + dS ′(v ′, v)

≤ ρ′ + (dG (u′, v ′) + ρ)

+ ρ′

≤ ρ+ 2ρ′ + dG (u′, u) + dG (u, v) + dG (v , v ′)

≤ ρ+ 2ρ′ + ρ′ + dG (u, v) + ρ′

≤ ρ+ 4ρ′ + dG (u, v),

13 / 16

Proofs

Proof.

#
"

!

S

S ′ r rr r rr r r r r r r
""
PP`̀ �

�
�
�
XXX

A
A HH

u

u′
v ′

v

dS ′(u, v) = dS ′(u, u′) + dS(u′, v ′) + dS ′(v ′, v)

≤ ρ′ + (dG (u′, v ′) + ρ) + ρ′

≤ ρ+ 2ρ′ + dG (u′, u) + dG (u, v) + dG (v , v ′)

≤ ρ+ 2ρ′ + ρ′ + dG (u, v) + ρ′

≤ ρ+ 4ρ′ + dG (u, v),

13 / 16

Proofs

Proof.

#
"

!

S

S ′ r rr r rr r r r r r r
""
PP`̀ �

�
�
�
XXX

A
A HH

u

u′
v ′

v

dS ′(u, v) = dS ′(u, u′) + dS(u′, v ′) + dS ′(v ′, v)

≤ ρ′ + (dG (u′, v ′) + ρ) + ρ′

≤ ρ+ 2ρ′

+ dG (u′, u) + dG (u, v) + dG (v , v ′)

≤ ρ+ 2ρ′ + ρ′ + dG (u, v) + ρ′

≤ ρ+ 4ρ′ + dG (u, v),

13 / 16

Proofs

Proof.

#
"

!

S

S ′ r rr r rr r r r r r r
""
PP`̀ �

�
�
�
XXX

A
A HH

u

u′
v ′

v

dS ′(u, v) = dS ′(u, u′) + dS(u′, v ′) + dS ′(v ′, v)

≤ ρ′ + (dG (u′, v ′) + ρ) + ρ′

≤ ρ+ 2ρ′ + dG (u′, u) + dG (u, v) + dG (v , v ′)

≤ ρ+ 2ρ′ + ρ′ + dG (u, v) + ρ′

≤ ρ+ 4ρ′ + dG (u, v),

13 / 16

Proofs

Proof.

#
"

!

S

S ′ r rr r rr r r r r r r
""
PP`̀ �

�
�
�
XXX

A
A HH

u

u′
v ′

v

dS ′(u, v) = dS ′(u, u′) + dS(u′, v ′) + dS ′(v ′, v)

≤ ρ′ + (dG (u′, v ′) + ρ) + ρ′

≤ ρ+ 2ρ′ + dG (u′, u) + dG (u, v) + dG (v , v ′)

≤ ρ+ 2ρ′

+ ρ′ + dG (u, v) + ρ′

≤ ρ+ 4ρ′ + dG (u, v),

13 / 16

Proofs

Proof.

#
"

!

S

S ′ r rr r rr r r r r r r
""
PP`̀ �

�
�
�
XXX

A
A HH

u

u′
v ′

v

dS ′(u, v) = dS ′(u, u′) + dS(u′, v ′) + dS ′(v ′, v)

≤ ρ′ + (dG (u′, v ′) + ρ) + ρ′

≤ ρ+ 2ρ′ + dG (u′, u) + dG (u, v) + dG (v , v ′)

≤ ρ+ 2ρ′ + ρ′

+ dG (u, v) + ρ′

≤ ρ+ 4ρ′ + dG (u, v),

13 / 16

Proofs

Proof.

#
"

!

S

S ′ r rr r rr r r r r r r
""
PP`̀ �

�
�
�
XXX

A
A HH

u

u′
v ′

v

dS ′(u, v) = dS ′(u, u′) + dS(u′, v ′) + dS ′(v ′, v)

≤ ρ′ + (dG (u′, v ′) + ρ) + ρ′

≤ ρ+ 2ρ′ + dG (u′, u) + dG (u, v) + dG (v , v ′)

≤ ρ+ 2ρ′ + ρ′ + dG (u, v)

+ ρ′

≤ ρ+ 4ρ′ + dG (u, v),

13 / 16

Proofs

Proof.

#
"

!

S

S ′ r rr r rr r r r r r r
""
PP`̀ �

�
�
�
XXX

A
A HH

u

u′
v ′

v

dS ′(u, v) = dS ′(u, u′) + dS(u′, v ′) + dS ′(v ′, v)

≤ ρ′ + (dG (u′, v ′) + ρ) + ρ′

≤ ρ+ 2ρ′ + dG (u′, u) + dG (u, v) + dG (v , v ′)

≤ ρ+ 2ρ′ + ρ′ + dG (u, v) + ρ′

≤ ρ+ 4ρ′ + dG (u, v),

13 / 16

Proofs

Proof.

#
"

!

S

S ′ r rr r rr r r r r r r
""
PP`̀ �

�
�
�
XXX

A
A HH

u

u′
v ′

v

dS ′(u, v) = dS ′(u, u′) + dS(u′, v ′) + dS ′(v ′, v)

≤ ρ′ + (dG (u′, v ′) + ρ) + ρ′

≤ ρ+ 2ρ′ + dG (u′, u) + dG (u, v) + dG (v , v ′)

≤ ρ+ 2ρ′ + ρ′ + dG (u, v) + ρ′

≤ ρ+ 4ρ′ + dG (u, v),

13 / 16

Proofs

Proof.

#
"

!

S

S ′ r rr r rr r r r r r r
""
PP`̀ �

�
�
�
XXX

A
A HH

u

u′
v ′

v

dS ′(u, v) = dS ′(u, u′) + dS(u′, v ′) + dS ′(v ′, v)

≤ ρ′ + (dG (u′, v ′) + ρ) + ρ′

≤ ρ+ 2ρ′ + dG (u′, u) + dG (u, v) + dG (v , v ′)

≤ ρ+ 2ρ′ + ρ′ + dG (u, v) + ρ′

≤ ρ+ 4ρ′ + dG (u, v),

13 / 16

Proofs

Let T be a tree.

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td(T),

where

T0 = T .

If Ti 6= P`, then Ti+1 ⊆ Ti minimal with all branch vertices of Ti .

If Ti = P` for ` ≥ 3, then let Ti+1 ⊆ Ti have order 1.

If Ti = P` for ` ≤ 2, then terminate; d(T)← i .

Lemma (Bendele and R 2020)

pbt(T) = d(T) for every tree T .

14 / 16

Proofs

Let T be a tree.

r
r
rr
rr

r r

rr
r rr

�
�
�T
T
T

b
b
b

�
�
�
��

J
J
J

r r
r
�

��

�
��

r
r r
r

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td(T),

where

T0 = T .

If Ti 6= P`, then Ti+1 ⊆ Ti minimal with all branch vertices of Ti .

If Ti = P` for ` ≥ 3, then let Ti+1 ⊆ Ti have order 1.

If Ti = P` for ` ≤ 2, then terminate; d(T)← i .

Lemma (Bendele and R 2020)

pbt(T) = d(T) for every tree T .

14 / 16

Proofs

Let T be a tree.

r
r
rr

r r

r r
�
�
�T
T
T

b
b
b

�
�
�
��

J
J
J

r
r

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td(T),

where

T0 = T .

If Ti 6= P`, then Ti+1 ⊆ Ti minimal with all branch vertices of Ti .

If Ti = P` for ` ≥ 3, then let Ti+1 ⊆ Ti have order 1.

If Ti = P` for ` ≤ 2, then terminate; d(T)← i .

Lemma (Bendele and R 2020)

pbt(T) = d(T) for every tree T .

14 / 16

Proofs

Let T be a tree.

r
r r
�
�
�
��

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td(T),

where

T0 = T .

If Ti 6= P`, then Ti+1 ⊆ Ti minimal with all branch vertices of Ti .

If Ti = P` for ` ≥ 3, then let Ti+1 ⊆ Ti have order 1.

If Ti = P` for ` ≤ 2, then terminate; d(T)← i .

Lemma (Bendele and R 2020)

pbt(T) = d(T) for every tree T .

14 / 16

Proofs

Let T be a tree.

r

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td(T),

where

T0 = T .

If Ti 6= P`, then Ti+1 ⊆ Ti minimal with all branch vertices of Ti .

If Ti = P` for ` ≥ 3, then let Ti+1 ⊆ Ti have order 1.

If Ti = P` for ` ≤ 2, then terminate; d(T)← i .

Lemma (Bendele and R 2020)

pbt(T) = d(T) for every tree T .

14 / 16

Proofs

Let T be a tree.

r
T0

⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td(T),

where

T0 = T .

If Ti 6= P`, then Ti+1 ⊆ Ti minimal with all branch vertices of Ti .

If Ti = P` for ` ≥ 3, then let Ti+1 ⊆ Ti have order 1.

If Ti = P` for ` ≤ 2, then terminate; d(T)← i .

Lemma (Bendele and R 2020)

pbt(T) = d(T) for every tree T .

14 / 16

Proofs

Let T be a tree.

r
T0 ⊃ T1

⊃ T2 ⊃ . . . ⊃ Td(T),

where

T0 = T .

If Ti 6= P`, then Ti+1 ⊆ Ti minimal with all branch vertices of Ti .

If Ti = P` for ` ≥ 3, then let Ti+1 ⊆ Ti have order 1.

If Ti = P` for ` ≤ 2, then terminate; d(T)← i .

Lemma (Bendele and R 2020)

pbt(T) = d(T) for every tree T .

14 / 16

Proofs

Let T be a tree.

r
T0 ⊃ T1 ⊃ T2

⊃ . . . ⊃ Td(T),

where

T0 = T .

If Ti 6= P`, then Ti+1 ⊆ Ti minimal with all branch vertices of Ti .

If Ti = P` for ` ≥ 3, then let Ti+1 ⊆ Ti have order 1.

If Ti = P` for ` ≤ 2, then terminate; d(T)← i .

Lemma (Bendele and R 2020)

pbt(T) = d(T) for every tree T .

14 / 16

Proofs

Let T be a tree.

r
T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td(T),

where

T0 = T .

If Ti 6= P`, then Ti+1 ⊆ Ti minimal with all branch vertices of Ti .

If Ti = P` for ` ≥ 3, then let Ti+1 ⊆ Ti have order 1.

If Ti = P` for ` ≤ 2, then terminate; d(T)← i .

Lemma (Bendele and R 2020)

pbt(T) = d(T) for every tree T .

14 / 16

Proofs

Let T be a tree.

r
T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td(T),

where

T0 = T .

If Ti 6= P`, then Ti+1 ⊆ Ti minimal with all branch vertices of Ti .

If Ti = P` for ` ≥ 3, then let Ti+1 ⊆ Ti have order 1.

If Ti = P` for ` ≤ 2, then terminate; d(T)← i .

Lemma (Bendele and R 2020)

pbt(T) = d(T) for every tree T .

14 / 16

Proofs

Let T be a tree.

r
T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td(T),

where

T0 = T .

If Ti 6= P`, then Ti+1 ⊆ Ti minimal with all branch vertices of Ti .

If Ti = P` for ` ≥ 3, then let Ti+1 ⊆ Ti have order 1.

If Ti = P` for ` ≤ 2, then terminate; d(T)← i .

Lemma (Bendele and R 2020)

pbt(T) = d(T) for every tree T .

14 / 16

Proofs

Let T be a tree.

r
T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td(T),

where

T0 = T .

If Ti 6= P`, then Ti+1 ⊆ Ti minimal with all branch vertices of Ti .

If Ti = P` for ` ≥ 3, then let Ti+1 ⊆ Ti have order 1.

If Ti = P` for ` ≤ 2, then terminate; d(T)← i .

Lemma (Bendele and R 2020)

pbt(T) = d(T) for every tree T .

14 / 16

Proofs

Let T be a tree.

r
T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td(T),

where

T0 = T .

If Ti 6= P`, then Ti+1 ⊆ Ti minimal with all branch vertices of Ti .

If Ti = P` for ` ≥ 3, then let Ti+1 ⊆ Ti have order 1.

If Ti = P` for ` ≤ 2, then terminate; d(T)← i .

Lemma (Bendele and R 2020)

pbt(T) = d(T) for every tree T .

14 / 16

Proofs

Let T be a tree.

r
T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td(T),

where

T0 = T .

If Ti 6= P`, then Ti+1 ⊆ Ti minimal with all branch vertices of Ti .

If Ti = P` for ` ≥ 3, then let Ti+1 ⊆ Ti have order 1.

If Ti = P` for ` ≤ 2, then terminate; d(T)← i .

Lemma (Bendele and R 2020)

pbt(T) = d(T) for every tree T .

14 / 16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition
(
T , (Xt)t∈V (T)

)
of breadth ρ, one can

construct in time O(m · d(T)) a 16ρd(T)-additive subtree S of G

intersecting each bag of the given tree-decomposition.

Proof.

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td . For i from d down to 0, construct a subtree Si
of G such that

Si contains a vertex from bag Xt for every vertex t of Ti ,

Si is 16ρ(d − i)-additive.

n(Sd) ≤ 2. S ← S0.

15 / 16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition
(
T , (Xt)t∈V (T)

)
of breadth ρ, one can

construct in time O(m · d(T)) a 16ρd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td . For i from d down to 0, construct a subtree Si
of G such that

Si contains a vertex from bag Xt for every vertex t of Ti ,

Si is 16ρ(d − i)-additive.

n(Sd) ≤ 2. S ← S0.

15 / 16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition
(
T , (Xt)t∈V (T)

)
of breadth ρ, one can

construct in time O(m · d(T)) a 16ρd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td .

For i from d down to 0, construct a subtree Si
of G such that

Si contains a vertex from bag Xt for every vertex t of Ti ,

Si is 16ρ(d − i)-additive.

n(Sd) ≤ 2. S ← S0.

15 / 16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition
(
T , (Xt)t∈V (T)

)
of breadth ρ, one can

construct in time O(m · d(T)) a 16ρd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td . For i from d down to 0, construct a subtree Si
of G

such that

Si contains a vertex from bag Xt for every vertex t of Ti ,

Si is 16ρ(d − i)-additive.

n(Sd) ≤ 2. S ← S0.

15 / 16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition
(
T , (Xt)t∈V (T)

)
of breadth ρ, one can

construct in time O(m · d(T)) a 16ρd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td . For i from d down to 0, construct a subtree Si
of G such that

Si contains a vertex from bag Xt for every vertex t of Ti ,

Si is 16ρ(d − i)-additive.

n(Sd) ≤ 2. S ← S0.

15 / 16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition
(
T , (Xt)t∈V (T)

)
of breadth ρ, one can

construct in time O(m · d(T)) a 16ρd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td . For i from d down to 0, construct a subtree Si
of G such that

Si contains a vertex from bag Xt for every vertex t of Ti ,

Si is 16ρ(d − i)-additive.

n(Sd) ≤ 2. S ← S0.

15 / 16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition
(
T , (Xt)t∈V (T)

)
of breadth ρ, one can

construct in time O(m · d(T)) a 16ρd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td . For i from d down to 0, construct a subtree Si
of G such that

Si contains a vertex from bag Xt for every vertex t of Ti ,

Si is 16ρ(d − i)-additive.

n(Sd) ≤ 2.

S ← S0.

15 / 16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition
(
T , (Xt)t∈V (T)

)
of breadth ρ, one can

construct in time O(m · d(T)) a 16ρd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td . For i from d down to 0, construct a subtree Si
of G such that

Si contains a vertex from bag Xt for every vertex t of Ti ,

Si is 16ρ(d − i)-additive.

n(Sd) ≤ 2. S ← S0.

15 / 16

Proofs

Lemma (Bendele and R 2020)

Given G and a tree decomposition
(
T , (Xt)t∈V (T)

)
of breadth ρ, one can

construct in time O(m · d(T)) a 16ρd(T)-additive subtree S of G
intersecting each bag of the given tree-decomposition.

Proof.

T0 ⊃ T1 ⊃ T2 ⊃ . . . ⊃ Td . For i from d down to 0, construct a subtree Si
of G such that

Si contains a vertex from bag Xt for every vertex t of Ti ,

Si is 16ρ(d − i)-additive.

n(Sd) ≤ 2. S ← S0.

15 / 16

Thank you for the attention!

16 / 16

