Outlines Problem 0 00 Literature 0 *PBF* 0000 P&B SEAF 00000 000 Experimentation

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Conclusion 00

## A multiperiod drayage problem with flexible service periods

Ali Ghezelsoflu<sup>1 2</sup>, Massimo Di Francesco<sup>1</sup>, Antonio Frangioni<sup>2</sup>, Paola Zuddas<sup>1</sup>

<sup>1</sup>Department of Mathematics and Computer Science University of Cagliari, Italy

> <sup>2</sup>Department of Computer Science University of Pisa, Italy

CTW 2020, 18th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, 14-16 SEPTEMBER 2020

| Outlines | Problem | Literature | <i>PBF</i> | P&B   | SEAF | Experimentation | Conclusion |
|----------|---------|------------|------------|-------|------|-----------------|------------|
| •        | 00      | O          | 0000       | 00000 | 000  | 000000000000    | 00         |
| Outline  | е       |            |            |       |      |                 |            |

- A new drayage problem;
- Three different approaches for this problem:
  - a path-based formulation (*PBF*) with all feasible routes (by an off-the-shelf MIP solver);
  - ▶ a Price-and-Branch algorithm (*P*&*B*);
  - a reformulation by node-arc model (SEAF) by the MIP solver;

ション ふゆ アメビア メロア しょうくしゃ

- Analysis of their effectiveness;
- Changes in flexibility & costs for the carrier and customers;

| Outlines | Problem | Literature | PBF  | P&B   | SEAF | Experimentation | Conclusion |
|----------|---------|------------|------|-------|------|-----------------|------------|
| 0        | •0      | 0          | 0000 | 00000 | 000  | 00000000000     | 00         |
| The pr   | roblem  |            |      |       |      |                 |            |

- Drayage: last-mile transportation of containers by trucks from an intermodal facility (e.g. a port) to serve customers;
- A homogeneous fleet of 20ft containers;
- Two types of customers:
  - Importers receiving container loads from the port;
  - Exporters shipping container loads to the same port;
- A fleet of one-container and two-containers trucks;
- Drivers waiting for containers in the facilities of customers;

Empty containers as well as loaded containers;

| Outlines | Problem | Literature | <i>PBF</i> | P&B   | SEAF | Experimentation | Conclusion |
|----------|---------|------------|------------|-------|------|-----------------|------------|
| 0        | ○●      | O          | 0000       | 00000 | 000  | 000000000000    | 00         |
| The p    | roblem  |            |            |       |      |                 |            |

- Two types of customers in terms of flexibility:
  - Inflexible customers, who require to be served only at the due day;
  - Flexible customers, for whom the carrier pays customer-dependent penalties for earlier/later than desired services within customer-dependent periods;
- When should they be served? Which routes should be made to minimize routing costs?
- A maximum number of container loads can be delivered or collected early or late in each period for *flexible* customers;
- A capacity and a cost for containers left at the port for late delivery and early collection.

| Outlines | Problem | Literature | PBF  | P&B   | SEAF | Experimentation | Conclusion |
|----------|---------|------------|------|-------|------|-----------------|------------|
| 0        | 00      | ●          | 0000 | 00000 | 000  |                 | 00         |
| Literati | ure     |            |      |       |      |                 |            |

- Many papers on single-day drayage problems (Ghezelsoflu et al., 2018);
  - Few papers with two-container trucks;
  - Many papers on the delivery or collection of containers (instead of container loads);

ション ふゆ アメビア メロア しょうくしゃ

- Many heuristics;
- Several routing problems with multiple periods:
  - Inventory routing problems :-(
  - Periodic routing problems :-(
  - Flexible Vehicle routing problem :-|
  - Multiperiod Vehicle Routing Problems :-)

 Outlines
 Problem
 Literature
 PBF
 P&B
 SEAF
 Experimentation
 Conclusion

 0
 00
 0
 0000
 0000
 000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

#### 1 - Path-based formulation with all feasible routes

- H: set of periods in the planning horizon;
- G = (N, A): *physical* directed graph;
- N = {p} ∪ V = {p} ∪ I ∪ E, i.e., nodes are the port (p) and all possible customers V = I ∪ E, in which I and E are the set of importers and exporters, respectively;
- ► (i, j) ∈ A: the direct truck trip between i and j, with two associated costs c<sup>1</sup><sub>ij</sub> and c<sup>2</sup><sub>ij</sub> for one- and two-containers trucks, respectively;
- ▶ (Physical) sub-graphs G<sub>h</sub><sup>t</sup> = (N<sub>h</sub>, A<sub>h</sub><sup>t</sup>) of G for each period h ∈ H and truck type t ∈ T = {1, 2};
- N<sub>h</sub> = {p} ∪ V<sub>h</sub>, V<sub>h</sub> = I<sub>h</sub> ∪ E<sub>h</sub> and I<sub>h</sub> and E<sub>h</sub> set of importers and exporters accepting a transportation service in period h ∈ H, respectively; A<sup>t</sup><sub>h</sub>: arcs induced by N<sub>h</sub> and feasible for the given truck type t ∈ T;



#### 1 - Path-based formulation with all feasible routes



Arcs for two-containers trucks



- Port
- Importer
- **Exporter**
- Arcs between two different locations

 Outlines
 Problem
 Literature
 PBF
 P&B
 SEAF
 Experimentation
 Conclusion

 0
 00
 0
 0000
 0000
 000
 00000
 00

1 - Path-based formulation with all feasible routes

- R(h)<sup>t</sup>: set of all feasible routes for trucks of type t in period h (i.e. cycles in G<sup>t</sup><sub>h</sub> starting and ending in p);
- Self-loops for two-container trucks;
- R(h) = R(h)<sup>1</sup> ∪ R(h)<sup>2</sup>: set of all feasible routes in period h ∈ H;
   R = ∪<sub>h∈H</sub>R(h);
- ▶  $R(1:h) = \cup_{k=1...h} R(k)$ : set of feasible routes *up to* day  $h \in H$ ;
- ▶  $k_h^t$ : number of trucks of type  $t \in T$  available in period  $h \in H$ ;
- ▶ For each route  $r \in R(h)$ , let  $\alpha_{v,r} =$ 
  - 0 if customer v is not visited in route r
  - 1 if customer v is served by 1 container in route r
  - 2 if customer v is served by 2 containers in route r;
- $d_v^h$ : the demand of customer v in period  $h \in H$ ;

▶  $d_v^{1:h} = \sum_{k=1...h} d_v^k$ : demand of customer  $v \in V$  up to day  $h \in H$ ;

| Outlines | Problem | Literature | PBF  | P&B   | SEAF | Experimentation | Conclusion |
|----------|---------|------------|------|-------|------|-----------------|------------|
| 0        | 00      | 0          | 0000 | 00000 | 000  | 00000000000     | 00         |

#### 1- Path-based formulation with all feasible routes

Decision variables:

- ▶  $x_r$ : how many times route  $r \in R$  is performed,  $c_r$  is the unitary cost;
- s<sub>v</sub><sup>h+</sup>: number of container loads delivered later/collected earlier than agreed for customer v ∈ V in period h ∈ H, f<sub>v</sub><sup>h+</sup> is the unitary cost;
- ▶  $s_v^{h-}$ : number of container loads collected later/delivered earlier than agreed for customer  $v \in V$  in period  $h \in H$ ,  $f_v^{h-}$  is the unitary cost;

The path-based formulation (PBF):

min 
$$\sum_{r \in R} c_r x_r + \sum_{h \in H} \sum_{v \in V} (f_v^{h+} s_v^{h+} + f_v^{h-} s_v^{h-})$$
 (1)

s.t. 
$$\sum_{r \in R(1:h)} \alpha_{v,r} x_r + s_v^{h+} - s_v^{h-} = d_v^{1:h}$$
  $v \in V$ ,  $h \in H$  (2)

$$\sum_{r \in R^t(h)} x_r \le k_h^t \qquad \qquad t \in T \quad , \quad h \in H \qquad (3)$$

$$s_v^{h+} \leq u_v^{h+}$$
  $v \in V$ ,  $h \in H$  (4)

$$s_v^{h-} \le u_v^{h-} \qquad \qquad v \in V \ , \ h \in H \qquad (5)$$

$$\sum_{v \in I} s_v^{h+} - \sum_{v \in I} s_v^{h-} \le u_h^I \qquad \qquad h \in H \qquad (6)$$

$$\sum_{v \in E} s_v^{h-} - \sum_{v \in E} s_v^{h+} \le u_h^E \qquad \qquad h \in H \qquad (7)$$

$$x_{r} \in \mathbb{N} \qquad r \in R \quad (8)$$

$$s_{v}^{h+}, s_{v}^{h-} \in \mathbb{R}_{+} \qquad \qquad v \in V, \quad h \in H \quad (9)$$

| Outlines | Problem | Literature | <i>PBF</i> | <i>P&amp;B</i> | SEAF | Experimentation | Conclusion |
|----------|---------|------------|------------|----------------|------|-----------------|------------|
| 0        | 00      | 0          | 0000       | ●0000          | 000  | 000000000000    | 00         |
|          |         |            | с . ц      |                |      | с I             |            |

2 - Price-and-Branch for the path-based formulation

- When the number of customers grows, the number of feasible routes quickly becomes too large;
- The linear relaxation (<u>PBF</u>) of (PBF) can be solved by the column generation technique:
  - build the Restricted Master Problem (RMP), i.e. (<u>PBF</u>), in which the full set of routes R is replaced by a (much) smaller subset R ⊂ R;
  - ▶ initialise R;
  - (*RMP*) is solved by any algorithm for Linear Programming, which also solves its dual;

ション ふゆ アメビア メロア しょうくしゃ

| Outlines | Problem | Literature | PBF  | P&B   | SEAF | Experimentation | Conclusion |
|----------|---------|------------|------|-------|------|-----------------|------------|
| 0        | 00      | 0          | 0000 | 00000 | 000  | 00000000000     | 00         |
|          |         |            |      |       |      |                 |            |

#### 2 - Price-and-Branch for the path-based formulation

With  $\xi_v^h$ ,  $\pi_h^t$ ,  $\rho_v^{h+}$ ,  $\rho_v^{h-}$ ,  $\sigma_h^l$ ,  $\sigma_h^E$  being the dual variables of (2), (3), (22), (23), (24) and (25), respectively, the dual of the (*RMP*) is:

$$\max \sum_{h \in H} \left( \sum_{v \in V} \left( \xi_v^h d_v^{1:h} - \rho_v^{h+} u_v^{h+} - \rho_v^{h-} u_v^{h-} \right) - \sigma_h^l u_h^l - \sigma_h^E u_h^E - \sum_{t \in T} \pi_h^t k_h^t \right)$$
(10)

s.t. 
$$\sum_{\mathbf{h}\in\mathbf{H}}\sum_{\mathbf{v}\in\mathbf{V}}\xi_{\mathbf{v}}^{\mathbf{h}}\alpha_{\mathbf{v},\mathbf{r}}-\pi_{\mathbf{h}(\mathbf{r})}^{\mathbf{t}(\mathbf{r})}\leq \mathbf{c}_{\mathbf{r}}$$
  $r\in\mathcal{R}$  (11)

$$\xi_{v}^{h} - \rho_{v}^{h+} - \sigma_{h}^{I} + \sigma_{h}^{E} \le f_{v}^{h+} \qquad v \in V \quad , \quad h \in H$$
 (12)

$$-\xi_{\nu}^{h} - \rho_{\nu}^{h-} + \sigma_{h}^{I} - \sigma_{h}^{E} \le f_{\nu}^{h-} \qquad \nu \in V \ , \ h \in H$$
 (13)

$$ho_{\mathbf{v}}^{h+}$$
 ,  $ho_{\mathbf{v}}^{h-} \in \mathbb{R}_+$   $\mathbf{v} \in V$  ,  $h \in H$  (14)

$$\pi_h^t \in \mathbb{R}_+$$
  $t \in T$ ,  $h \in H$  (15)

$$\sigma'_h$$
,  $\sigma^E_h \in \mathbb{R}_+$   $h \in H$  (16)

Constraints (11) correspond to each route in the restricted subset  $\mathcal{R}$  of routes;

 Outlines
 Problem
 Literature
 PBF
 P&B
 SEAF
 Experimentation
 Conclusion

 0
 0
 0
 000
 000
 000
 000
 000
 000

#### 2 - Price-and-Branch for the path-based formulation

If the dual solution of (RMP) satisfies constraints (11) for all feasible routes R, (<u>PBF</u>) is optimally solved, else determine a route r with negative reduced cost:

 $c_{\overline{r}}^* = c_{\overline{r}} - \sum_{h \in H} \sum_{v \in V} \xi_v^{*h} \alpha_{v,\overline{r}} + (\pi_{h(\overline{r})}^{t(\overline{r})})^*;$ 

- ► Discarding the last (constant) term, c<sup>\*</sup><sub>r</sub> is the sum of the reduced costs of the arcs of the cycle (comprised the self-loops), where the reduced cost of arc (i, j) is c<sup>\*</sup><sub>ii</sub> = c<sub>ij</sub> − ξ<sup>\*</sup><sub>i</sub>;
- These networks are obtained from the (physical) sub-graphs  $G_h^t = (N_h, A_h^t)$  by "unrolling the self-loops".

| Outlines | Problem | Literature | PBF  | P&B   | SEAF | Experimentation | Conclusion |
|----------|---------|------------|------|-------|------|-----------------|------------|
| 0        | 00      | 0          | 0000 | 00000 | 000  | 00000000000     | 00         |
|          |         |            |      |       |      |                 |            |

#### 2 - Price-and-Branch for the path-based formulation

Acyclic "step-expanded" networks:



| Outlines | Problem | Literature | <i>PBF</i> | <i>P&amp;B</i> | SEAF | Experimentation | Conclusion |
|----------|---------|------------|------------|----------------|------|-----------------|------------|
| 0        | 00      | 0          | 0000       | 0000●          | 000  | 000000000000    | 00         |
|          |         |            | с . ц      |                |      | с I             |            |

2 - Price-and-Branch for the path-based formulation

- Efficient acyclic SPP algorithms to solve the pricing problem;
- No negative cost cycle can ever form;
- Quite good bounds by column generation, but in general no integer feasible solution;
- Price-and-Branch (P&B): pass the final set of routes R of (RMP) to a general-purpose MILP solver and solve the (small-ish) program to integer optimality;
- P&B quite effective and efficient when the root node gap is low.

ション ふゆ アメビア メロア しょうくしゃ

| 0        | 00      | 0          | 0000 | 00000 | •00  | 000000000000    | 00         |
|----------|---------|------------|------|-------|------|-----------------|------------|
| Outlines | Problem | Literature | PBF  | P&B   | SEAF | Experimentation | Conclusion |

#### 3 - Compact arc-flow formulation

- Use the pricing problem to construct a "compact" (flow-based) formulation to the entire problem with the same strong bound as the (*PBF*);
- Expand the former step-expanded networks G
  <sup>t</sup><sub>h</sub> by adding the single "return arc" (p", p'); all cycles necessarily use this "return arc";
- For each arc (i, j) ∈ A<sup>t</sup><sub>h</sub>, x<sup>th</sup><sub>ij</sub> is the number of trucks of type t doing that particular leg (comprised the "no-travel arcs" (v', v") for some customer v ∈ V<sub>h</sub> at time period h) with unitary cost C<sup>t</sup><sub>ij</sub>.

| Outlines | Problem | Literature | PBF  | P&B   | SEAF | Experimentation | Conclusion |
|----------|---------|------------|------|-------|------|-----------------|------------|
| 0        | 00      | 0          | 0000 | 00000 | 000  | 00000000000     | 00         |

#### 3 - Compact arc-flow formulation

Let  $FS_{h}^{t}$  and  $BS_{h}^{t}$  be the forward star and backward star of a node. The Step-Expanded Arc-Flow Formulation (SEAF) is:  $\min \sum_{h \in H} \sum_{t \in T} \sum_{(i,j) \in \bar{A}_{L}^{t}} c_{ij}^{t} x_{ij}^{th} + \sum_{h \in H} \sum_{v \in V} (f_{v}^{h+} s_{v}^{h+} + f_{v}^{h-} s_{v}^{h-})$ (17) $s.t. \sum_{(j,i)\in \mathsf{BS}^t_k(i)} x^{th}_{ji} - \sum_{(i,j)\in \mathsf{FS}^t_k(i)} x^{th}_{ij} = 0 \qquad i \in \bar{\mathsf{N}}^t_h \ , \ t \in \mathsf{T} \ , \ h \in \mathsf{H}$ (18)  $\sum \left( \sum x_{j\mathbf{v}}^{\mathbf{1k}} + \sum x_{j\mathbf{v}'}^{\mathbf{2k}} + \sum x_{j\mathbf{v}'}^{\mathbf{2k}} + \right)$  $\mathbf{k} = \overline{\mathbf{1}, \dots, \mathbf{h}} \quad (\mathbf{j}, \mathbf{v}) \in \mathsf{BS}^1_{\mathbf{k}}(\mathbf{v}) \qquad (\mathbf{j}, \mathbf{v}') \in \mathsf{BS}^2_{\mathbf{k}}(\mathbf{v}') \qquad (\mathbf{j}, \mathbf{v}'') \in \mathsf{BS}^2_{\mathbf{k}}(\mathbf{v}'')$  $+ s_{u}^{h+} - s_{u}^{h-} = d_{u}^{1:h}$  $v \in V$ ,  $h \in H$ (19) $\mathbf{x}_{\mathbf{p}''\mathbf{p}'}^{\mathrm{th}} \leq \mathbf{k}_{\mathbf{h}}^{\mathrm{t}}$  $t\in T\ ,\ h\in H$ (20) $\mathbf{x}_{ii}^{th} \in \mathbb{N}$  $(\mathbf{i},\mathbf{j}) \in \bar{\mathbf{A}}_{\mathbf{h}}^{\mathbf{t}}$ ,  $\mathbf{t} \in \mathbf{T}$ ,  $\mathbf{h} \in \mathbf{H}$  (21)  $s_v^{h+} \leq u_v^{h+}$  $v \in V$ ,  $h \in H$ (22) $s_{v}^{h-} < u_{v}^{h-}$  $v \in V$ ,  $h \in H$ (23) $\sum_{v \in I} s_v^{h+} - \sum_{v \in I} s_v^{h-} \leq u_h^I$  $h \in H$ (24) $\sum_{v \in E} s_v^{h-} - \sum_{v \in E} s_v^{h+} \leq u_h^E$  $h \in H$ (25) $s_{v}^{h+}$ ,  $s_{v}^{h-} \in \mathbb{R}_{+}$  $v \in V$ ,  $h \in H$ (26)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

OutlinesProblemLiteraturePBFP&BSEAFExperimentationConclusion00000000000000000000000000000000000

#### 3 - Compact arc-flow formulation

▶ The LP relaxation of (SEAF) has the same lower bound as (<u>PBF</u>):

- The Lagrangian relaxation w.r.t. constraints (19)–(20) decomposes into as many flow subproblems as the networks G<sup>t</sup><sub>h</sub> plus as many univariate problems on slack variables.
- By calling ξ<sup>h</sup><sub>ν</sub> and π<sup>t</sup><sub>h</sub> respectively the Lagrangian multipliers of (19) and (20), the costs of the Lagrangian Relaxation are the reduced costs of the former pricing problem; the optimal value of the slack variables in the subproblems is null;
- The solution of the Lagrangian relaxation actually reduces to precisely the same acyclic SPPs between p' and p" as the pricing problem for (<u>PBF</u>);
- Lagrangian (network) subproblems obviously have integrality property, hence (SEAF) is "as tight" as (<u>PBF</u>).

| Outlines | Problem  | Literature | <i>PBF</i> | P&B   | <i>SEAF</i> | Experimentation | Conclusion |
|----------|----------|------------|------------|-------|-------------|-----------------|------------|
| 0        | 00       | 0          | 0000       | 00000 | 000         | •00000000000    | 00         |
| Experir  | nentatio | on         |            |       |             |                 |            |

- The size of (SEAF) grows about quadratically in the number of customers rather than quartically as the (PBF);
- The number of final routes at the end of the column generation can be much smaller than the size of (SEAF);
- Test to what extent the former formulations can be solved in a restricted but realistic problem and in the general problem;
- Analyse how increased customer flexibility levels affect routing costs (e.g. how to size potential incentives for flexibility).

- Setting:
  - Cplex 12.8 on a 3.00 GHz processor, 16 GB of RAM;
  - Maximum running time of 3 hours;
  - required relative gap = 0.01%.

| Outlines | Problem | Literature | PBF  | Р&В   |
|----------|---------|------------|------|-------|
| 0        | 00      | 0          | 0000 | 00000 |
|          |         |            |      |       |

B SEAF

Experimentation 00000000000 Conclusion 00

#### The restricted problem

- Customers only specify a total demand over all time periods, rather than a daily desired demand;
- Three types of customers in terms of *flexibility level*:
  - no-flexibility customers, who require to be served only in a desired day;
  - medium-flexibility customers, who accept to be served in two consecutive days of the planning horizon;
  - high-flexibility customers, who accept to be served in any day.
- No penalties for earlier/later than desired services within flexibility periods (i.e. the demand of customers can be freely subdivided between these periods);
- No capacity on the maximum number of container loads that can be served early or late;
- No capacities and costs for containers left at the port for late delivery and early collection.

| Outlines | Problem | Literature | PBF  | P&B   | SEAF | Experimentation | Conclusion |
|----------|---------|------------|------|-------|------|-----------------|------------|
| 0        | 00      | 0          | 0000 | 00000 | 000  | 00000000000     | 00         |
|          |         |            |      |       |      |                 |            |

#### Tests on the restricted problem (small instances)

|    |    |         |         |        | PBF-r    |       |    |     | F               | P&B            |      |                 |                 |            | SEAF | -r               |                  |      |
|----|----|---------|---------|--------|----------|-------|----|-----|-----------------|----------------|------|-----------------|-----------------|------------|------|------------------|------------------|------|
| I  | Ε  | $k_1^h$ | $k_2^h$ | R      | $\tau_n$ | tn    | it | В*  | t <sub>PB</sub> | t <sub>M</sub> | tp   | t <sub>Im</sub> | t <sub>NA</sub> | $	au_{NA}$ | cut  | gap <sub>B</sub> | gap <sub>A</sub> | gap  |
| 2  | 48 | 22      | 56      | 16278  | 1.02     | 0.56  | 37 | 214 | 11.1            | 9.64           | 1.22 | 0.50            | 0.31            | 0.08       | 52   | 1.17             | 0.00             | 0.55 |
| 5  | 45 | 21      | 54      | 62850  | 4.19     | 1.67  | 38 | 217 | 5.58            | 3.92           | 1.39 | 0.30            | 0.27            | 0.13       | 52   | 1.18             | 0.00             | 1.56 |
| 10 | 40 | 18      | 50      | 177750 | 11.02    | 8.01  | 41 | 231 | 6.74            | 5.07           | 1.38 | 0.15            | 0.25            | 0.36       | 67   | 1.65             | 0.00             | 0.60 |
| 15 | 35 | 17      | 42      | 295500 | 17.97    | 14.05 | 41 | 259 | 7.38            | 5.61           | 1.42 | 0.18            | 0.47            | 0.81       | 50   | 0.80             | 0.00             | 0.68 |
| 20 | 30 | 13      | 37      | 379350 | 23.13    | 23.23 | 56 | 301 | 10.2            | 8.10           | 1.73 | 0.20            | 0.33            | 0.67       | 46   | 1.25             | 0.01             | 0.75 |
| 25 | 25 | 11      | 32      | 407550 | 24.79    | 16.23 | 51 | 302 | 8.28            | 6.22           | 1.63 | 0.11            | 0.30            | 0.46       | 37   | 1.64             | 0.00             | 0.79 |
| 30 | 20 | 12      | 32      | 563670 | 22.27    | 16.23 | 47 | 304 | 8.79            | 6.74           | 1.60 | 0.13            | 0.48            | 0.45       | 42   | 1.17             | 0.00             | 0.91 |
| 35 | 15 | 15      | 39      | 285000 | 17.43    | 13.02 | 48 | 285 | 10.1            | 7.95           | 1.77 | 0.19            | 0.80            | 0.35       | 51   | 1.49             | 0.00             | 0.79 |
| 40 | 10 | 17      | 46      | 165750 | 9.96     | 4.61  | 46 | 272 | 7.89            | 5.94           | 1.53 | 0.17            | 0.39            | 0.52       | 39   | 0.52             | 0.00             | 0.74 |
| 45 | 5  | 20      | 50      | 53850  | 3.39     | 2.01  | 41 | 236 | 8.19            | 5.95           | 1.84 | 0.27            | 0.42            | 0.88       | 37   | 0.98             | 0.00             | 0.65 |
| 48 | 2  | 22      | 55      | 11862  | 0.73     | 1.14  | 39 | 226 | 5.67            | 4.08           | 1.31 | 0.24            | 0.39            | 0.41       | 72   | 0.59             | 0.00             | 1.52 |
| 2  | 48 | 0       | 68      | 16278  | 1.02     | 1.17  | 37 | 310 | 5.95            | 4.30           | 1.24 | 0.24            | 0.36            | 0.08       | 12   | 1.39             | 0.00             | 1.36 |
| 5  | 45 | 0       | 65      | 62850  | 4.19     | 2.71  | 39 | 308 | 6.52            | 4.76           | 1.35 | 0.26            | 0.36            | 0.13       | 54   | 1.19             | 0.00             | 0.55 |
| 10 | 40 | 0       | 60      | 177750 | 11.02    | 5.11  | 45 | 323 | 8.93            | 6.67           | 1.76 | 0.26            | 0.36            | 0.29       | 67   | 0.71             | 0.00             | 0.47 |
| 15 | 35 | 0       | 51      | 295500 | 17.97    | 14.91 | 42 | 289 | 6.41            | 4.66           | 1.37 | 0.20            | 0.42            | 0.79       | 57   | 1.52             | 0.00             | 1.07 |
| 20 | 30 | 0       | 44      | 379350 | 23.13    | 13.29 | 48 | 319 | 7.66            | 5.63           | 1.58 | 0.17            | 0.31            | 0.56       | 29   | 1.21             | 0.00             | 1.20 |
| 25 | 25 | 0       | 38      | 407550 | 24.79    | 17.49 | 43 | 303 | 7.16            | 5.36           | 1.38 | 0.10            | 0.36            | 0.31       | 24   | 1.66             | 0.00             | 0.71 |
| 30 | 20 | 0       | 38      | 563670 | 22.27    | 16.75 | 46 | 313 | 7.37            | 5.40           | 1.49 | 0.18            | 0.27            | 0.67       | 46   | 1.07             | 0.00             | 1.09 |
| 35 | 15 | 0       | 47      | 285000 | 17.43    | 7.92  | 48 | 329 | 7.59            | 5.56           | 1.56 | 0.39            | 0.33            | 0.99       | 46   | 0.88             | 0.00             | 1.79 |
| 40 | 10 | 0       | 55      | 165750 | 9.96     | 3.81  | 45 | 307 | 6.92            | 5.11           | 1.41 | 0.81            | 0.38            | 0.70       | 47   | 1.63             | 0.00             | 1.27 |
| 45 | 5  | 0       | 60      | 53850  | 3.39     | 1.84  | 42 | 323 | 6.99            | 5.15           | 1.39 | 0.25            | 0.36            | 0.83       | 57   | 0.93             | 0.00             | 1.51 |
| 48 | 2  | 0       | 66      | 11862  | 0.73     | 1.23  | 39 | 317 | 5.93            | 4.17           | 1.34 | 0.24            | 0.31            | 0.41       | 51   | 1.47             | 0.00             | 1.33 |

Instances adapted from Lai et al. (2013)

| Outlines | Problem | Literature | <i>PBF</i> | P&B   | SEAF | Experimentation | Conclusio |
|----------|---------|------------|------------|-------|------|-----------------|-----------|
| 0        | 00      | O          | 0000       | 00000 | 000  |                 | 00        |
| Time     |         |            |            |       |      | ·               |           |

#### Tests on the restricted problem (average instances)

| _ |     |    |         |         |        |         |      |     |     |                 |                |      |                 |                 |                |      |                  |                  |      |
|---|-----|----|---------|---------|--------|---------|------|-----|-----|-----------------|----------------|------|-----------------|-----------------|----------------|------|------------------|------------------|------|
|   |     |    |         |         |        | PBF-r   |      |     |     | Р               | &В             |      |                 |                 |                | SEAF | -r               |                  |      |
|   | 1   | Ε  | $k_1^h$ | $k_2^h$ | R      | $	au_n$ | tn   | it  | В*  | t <sub>PB</sub> | t <sub>M</sub> | tP   | t <sub>Im</sub> | t <sub>NA</sub> | $	au_{\it NA}$ | cut  | gap <sub>B</sub> | gap <sub>A</sub> | gap  |
| A | 20  | 5  | 4       | 56      | 2.1e+4 | 1.36    | 0.43 | 18  | 116 | 2.16            | 1.88           | 0.19 | 0.09            | 0.16            | 0.83           | 19   | 2.45             | 0.00             | 3.04 |
| В | 20  | 10 | 3       | 51      | 8.5e+4 | 2.33    | 1.86 | 27  | 144 | 2.93            | 2.40           | 0.36 | 0.16            | 0.34            | 0.82           | 26   | 1.92             | 0.00             | 4.18 |
| C | 20  | 20 | 4       | 47      | 3.3e+5 | 9.62    | 2.24 | 35  | 210 | 5.01            | 4.17           | 0.68 | 0.13            | 0.61            | 0.90           | 35   | 2.44             | 0.00             | 5.75 |
| D | 30  | 8  | 7       | 74      | 1.2e+5 | 6.12    | 9.13 | 24  | 158 | 3.05            | 2.45           | 0.45 | 0.13            | 0.49            | 0.59           | 76   | 1.78             | 0.00             | 4.28 |
| E | 30  | 15 | 6       | 69      | 3.5e+6 | 7.90    | 14.1 | 31  | 204 | 4.39            | 3.54           | 0.72 | 0.11            | 0.72            | 0.56           | 69   | 3.31             | 0.00             | 4.67 |
| F | 30  | 30 | 7       | 79      | 1.6e+6 | 18.01   | 211  | 55  | 328 | 9.46            | 7.13           | 1.87 | 0.26            | 0.77            | 0.52           | 267  | 2.44             | 0.00             | 5.81 |
| G | 45  | 12 | 8       | 112     | 4.9e+5 | 10.52   | 31.5 | 35  | 248 | 5.52            | 4.05           | 1.15 | 0.14            | 0.62            | 0.29           | 49   | 1.66             | 0.00             | 5.52 |
| н | 45  | 23 | 6       | 97      | 1.8e+6 | 16.83   | -    | 55  | 308 | 9.54            | 6.99           | 2.12 | 0.18            | 1.18            | 0.84           | 239  | 2.22             | 0.00             | 6.55 |
| 1 | 45  | 45 | 9       | 129     | 8.3e+6 | 37.89   | -    | 81  | 479 | 22.9            | 16.1           | 5.80 | 1.00            | 2.29            | 0.88           | 181  | 1.60             | 0.00             | 4.82 |
| J | 75  | 19 | 12      | 194     | 4.1e+6 | 23.63   | -    | 62  | 423 | 13.4            | 8.80           | 3.92 | 0.29            | 3.82            | 0.63           | 188  | 1.75             | 0.01             | 5.81 |
| K | 75  | 38 | 13      | 177     | 1.6e+7 | 55.3    | -    | 85  | 513 | 20.8            | 12.8           | 6.89 | 0.20            | 4.59            | 0.81           | 128  | 1.46             | 0.00             | 5.52 |
| L | 75  | 75 | 14      | 202     | 6.3e+7 | 190.2   | -    | 140 | 836 | 46.8            | 27.0           | 17.1 | 0.42            | 5.19            | 0.62           | 183  | 1.70             | 0.00             | 6.69 |
| Μ | 100 | 25 | 17      | 236     | 1.2e+7 | 42.12   | -    | 77  | 542 | 19.9            | 11.4           | 7.36 | 0.22            | 4.08            | 0.74           | 140  | 1.47             | 0.00             | 3.22 |
| N | 100 | 50 | 21      | 258     | 4.9e+7 | 139.9   | -    | 97  | 660 | 29.4            | 15.6           | 12.1 | 0.23            | 5.09            | 0.88           | 216  | 1.33             | 0.00             | 4.44 |
|   |     |    |         |         |        |         |      |     |     |                 |                |      |                 |                 |                |      |                  |                  |      |

Instances adapted from Goetschalckx and Jacobs-Blecha (1989)

| Outlines | Problem | Literature | PBF  | P&B   | SEAF | Experimentation | Conclusion |
|----------|---------|------------|------|-------|------|-----------------|------------|
| 0        | 00      | 0          | 0000 | 00000 | 000  | 00000000000     | 00         |
|          |         |            |      |       |      |                 |            |

#### Tests on the restricted problem (large instances)

|     |     |         |         | PBF-r   |      |       | P&E             | 3              |                |                 |                 |                |      |       | SEA              | F-r              |     |      |                |                  |     |
|-----|-----|---------|---------|---------|------|-------|-----------------|----------------|----------------|-----------------|-----------------|----------------|------|-------|------------------|------------------|-----|------|----------------|------------------|-----|
|     | Ε   | $k_1^h$ | $k_2^h$ | R       | it   | В*    | t <sub>PB</sub> | t <sub>M</sub> | t <sub>P</sub> | t <sub>lm</sub> | t <sub>NA</sub> | $	au_{\it NA}$ | cut  | N     | gap <sub>B</sub> | gap <sub>A</sub> | tr  | gapr | t <sub>O</sub> | gap <sub>O</sub> | gap |
| 72  | 37  | 55      | 494     | 1.5e+7  | 79   | 480   | 18.7            | 11.5           | 6.23           | 0.4             | 5.3             | 0.4            | 126  | 0     | 1.17             | 0.00             | 5   | 0.00 | 5.3            | -                | 2.3 |
| 108 | 20  | 56      | 503     | 9.9e+6  | 80   | 517   | 32.9            | 17.5           | 13.5           | 0.7             | 90              | 0.6            | 0    | 1214  | 0.00             | 0.00             | 12  | 0.33 | 35             | -                | 4.5 |
| 103 | 44  | 54      | 489     | 3.9e+7  | 111  | 696   | 50.0            | 23.8           | 25.0           | 0.2             | 11              | 0.8            | 167  | 0     | 0.80             | 0.00             | 11  | 0.00 | 11             | -                | 5.0 |
| 192 | 16  | 143     | 1283    | 1.7e+7  | 104  | 751   | 51.1            | 31.0           | 17.1           | 0.1             | 78              | 1.2            | 176  | 3432  | 0.40             | 0.02             | 10  | 0.09 | 78             | -                | 3.4 |
| 75  | 175 | 131     | 1177    | 3.5e+8  | 201  | 1150  | 126             | 46.4           | 79.0           | 0.4             | 81              | 1.4            | 492  | 1352  | 0.47             | 0.04             | 9   | 0.64 | 39             | -                | 4.0 |
| 28  | 298 | 225     | 2016    | 1.2e+8  | 251  | 1108  | 142             | 38.7           | 100            | 0.3             | 137             | 1.7            | 585  | 1782  | 0.45             | 0.02             | 18  | 0.77 | 137            | -                | 3.7 |
| 196 | 196 | 146     | 1311    | 2.7e+9  | 557  | 2640  | 681             | 220            | 458            | 1.6             | 1231            | 1.9            | 739  | 3854  | 0.39             | 0.05             | 18  | 0.19 | 1181           | -                | 4.3 |
| 144 | 335 | 251     | 2256    | 4.5e+9  | 401  | 2215  | 572             | 126            | 444            | 0.3             | 752             | 2.1            | 779  | 1810  | 0.30             | 0.03             | 34  | 0.35 | 752            | -                | 3.4 |
| 258 | 254 | 147     | 1316    | 8.3e+9  | 645  | 3223  | 1021            | 262            | 756            | 0.8             | 924             | 2.3            | 1030 | 1952  | 0.55             | 0.04             | 52  | 0.37 | 924            | -                | 6.1 |
| 392 | 168 | 218     | 1954    | 8.5e+9  | 461  | 2496  | 779             | 152            | 623            | 0.7             | 10800           | 2.5            | 739  | 5195  | 0.55             | 0.06             | 63  | 0.41 | 6483           | 0.01             | 4.9 |
| 500 | 85  | 380     | 341     | 3.3e+9  | 425  | 2589  | 828             | 136            | 690            | 0.5             | 3531            | 2.3            | 858  | 49016 | 0.22             | 0.04             | 60  | 0.20 | 3421           | -                | 3.7 |
| 438 | 188 | 329     | 2958    | 1.3e+10 | 566  | 3083  | 1173            | 219            | 951            | 0.6             | 10800           | 2.4            | 637  | 9424  | 0.23             | 0.02             | 87  | 0.23 | 7359           | 0.02             | 3.5 |
| 490 | 210 | 271     | 2437    | 1.9e+10 | 614  | 3507  | 1532            | 262            | 1266           | 0.8             | 10800           | 2.8            | 818  | 1786  | 0.24             | 0.02             | 127 | 0.39 | 5458           | 0.01             | 5.1 |
| 251 | 585 | 432     | 3881    | 4.1e+10 | 1682 | 8208  | 10800           | 5174           | 5624           | 1.8             | 10800           | 2.9            | 704  | 1765  | 0.30             | 0.07             | 249 |      | 7528           | 0.06             | 3.9 |
| 140 | 775 | 579     | 5205    | 2.1e+10 | 1206 | 6034  | 10800           | 4161           | 6637           | 1.1             | 10800           | 3.2            | 469  | 1769  | 0.23             | 0.06             | 362 | _    | 9452           | 0.06             | 4.0 |
| 500 | 500 | 276     | 2482    | 1.2e+11 | 2364 | 11763 | 10800           | 4439           | 6358           | 2.1             | 10800           | 3.5            | 661  | 1775  | 0.34             | 0.08             | 534 |      | 8297           | 0.07             | 6.9 |

Instances adapted from Uchoa et al. (2017)

| Outlines | Problem | Literature | PBF  | P&B   | SEAF | Experimentation |
|----------|---------|------------|------|-------|------|-----------------|
| 0        | 00      | 0          | 0000 | 00000 | 000  | 000000000000    |

Conclusion 00

#### Tests on the general problem (small instances)

|    |    |         |         |        | PBF      |       |                 |            | SEA | F                |                  |
|----|----|---------|---------|--------|----------|-------|-----------------|------------|-----|------------------|------------------|
| 1  | Ε  | $k_1^h$ | $k_2^h$ | R      | $\tau_n$ | tn    | t <sub>NA</sub> | $	au_{NA}$ | cut | gap <sub>B</sub> | gap <sub>A</sub> |
| 2  | 48 | 22      | 56      | 16278  | 1.02     | 0.39  | 0.11            | 0.31       | 54  | 1.17             | 0.00             |
| 5  | 45 | 21      | 54      | 62850  | 4.19     | 1.67  | 0.16            | 0.27       | 52  | 1.18             | 0.00             |
| 10 | 40 | 18      | 50      | 177750 | 11.0     | 8.00  | 0.20            | 0.25       | 62  | 1.65             | 0.00             |
| 15 | 35 | 17      | 42      | 295500 | 17.9     | 13.9  | 0.36            | 0.47       | 53  | 0.80             | 0.00             |
| 20 | 30 | 13      | 37      | 379350 | 23.1     | 19.4  | 0.19            | 0.33       | 47  | 1.25             | 0.00             |
| 25 | 25 | 11      | 32      | 407550 | 24.7     | 16.2  | 0.33            | 0.30       | 32  | 1.64             | 0.00             |
| 30 | 20 | 12      | 32      | 563670 | 22.2     | 16.2  | 0.37            | 0.48       | 48  | 1.17             | 0.00             |
| 35 | 15 | 15      | 39      | 285000 | 17.4     | 13.0  | 0.47            | 0.80       | 54  | 1.49             | 0.00             |
| 40 | 10 | 17      | 46      | 165750 | 9.96     | 4.61  | 0.20            | 0.39       | 46  | 0.52             | 0.00             |
| 45 | 5  | 20      | 50      | 53850  | 3.39     | 2.01  | 0.30            | 0.42       | 41  | 0.98             | 0.00             |
| 48 | 2  | 22      | 55      | 11862  | 0.73     | 1.14  | 0.27            | 0.39       | 76  | 0.59             | 0.00             |
| 2  | 48 | 0       | 68      | 16278  | 1.02     | 1.17  | 0.35            | 0.36       | 18  | 1.39             | 0.00             |
| 5  | 45 | 0       | 65      | 62850  | 4.19     | 2.71  | 0.36            | 0.36       | 59  | 1.19             | 0.00             |
| 10 | 40 | 0       | 60      | 177750 | 11.0     | 5.11  | 0.37            | 0.36       | 63  | 0.71             | 0.00             |
| 15 | 35 | 0       | 51      | 295500 | 17.9     | 14.53 | 0.40            | 0.42       | 51  | 1.52             | 0.00             |
| 20 | 30 | 0       | 44      | 379350 | 23.1     | 13.11 | 0.32            | 0.31       | 30  | 1.21             | 0.00             |
| 25 | 25 | 0       | 38      | 407550 | 24.7     | 14.02 | 0.39            | 0.36       | 31  | 1.66             | 0.00             |
| 30 | 20 | 0       | 38      | 563670 | 22.2     | 13.64 | 0.16            | 0.27       | 34  | 1.07             | 0.00             |
| 35 | 15 | 0       | 47      | 285000 | 17.4     | 7.92  | 0.31            | 0.33       | 49  | 0.88             | 0.00             |
| 40 | 10 | 0       | 55      | 165750 | 9.96     | 3.81  | 0.33            | 0.38       | 50  | 1.63             | 0.00             |
| 45 | 5  | 0       | 60      | 53850  | 3.39     | 1.84  | 0.17            | 0.36       | 54  | 0.93             | 0.00             |
| 48 | 2  | 0       | 66      | 11862  | 0.73     | 1.23  | 0.19            | 0.31       | 56  | 1.47             | 0.00             |

Instances adapted from Lai et al. (2013)

| Outlines   | Problem | Literature | <i>PBF</i> | <i>P&amp;B</i> | <i>SEAF</i> | Experimentation | Conclusion |
|------------|---------|------------|------------|----------------|-------------|-----------------|------------|
| 0          | 00      | O          | 0000       | 00000          | 000         | 000000000000    | 00         |
| <b>—</b> . |         |            |            | 1              |             |                 |            |

| Tests on tl | he general | problem ( | (average instances) |
|-------------|------------|-----------|---------------------|
|-------------|------------|-----------|---------------------|

|   |     |    |         |         | I      | PBF     |      |                 |            | SEA | F                |                  |
|---|-----|----|---------|---------|--------|---------|------|-----------------|------------|-----|------------------|------------------|
|   | 1   | Ε  | $k_1^h$ | $k_2^h$ | R      | $	au_n$ | tn   | t <sub>NA</sub> | $	au_{NA}$ | cut | gap <sub>B</sub> | gap <sub>A</sub> |
| Α | 20  | 5  | 4       | 56      | 2.1e+4 | 1.36    | 0.33 | 0.05            | 0.83       | 14  | 0.60             | 0.00             |
| В | 20  | 10 | 3       | 51      | 8.5e+4 | 2.33    | 1.73 | 0.19            | 0.82       | 26  | 0.69             | 0.00             |
| С | 20  | 20 | 4       | 47      | 3.3e+5 | 9.62    | 2.00 | 0.26            | 0.90       | 42  | 0.73             | 0.00             |
| D | 30  | 8  | 7       | 74      | 1.2e+5 | 6.12    | 7.93 | 0.44            | 0.59       | 79  | 0.59             | 0.00             |
| Е | 30  | 15 | 6       | 69      | 3.5e+6 | 7.90    | 10.3 | 0.20            | 0.56       | 72  | 0.92             | 0.00             |
| F | 30  | 30 | 7       | 79      | 1.6e+6 | 18.0    | 183  | 0.48            | 0.52       | 144 | 0.19             | 0.00             |
| G | 45  | 12 | 8       | 112     | 4.9e+5 | 10.5    | 33.1 | 0.59            | 0.29       | 60  | 0.83             | 0.00             |
| Н | 45  | 23 | 6       | 97      | 1.8e+6 | 16.8    | 66.6 | 0.65            | 0.84       | 200 | 1.18             | 0.00             |
| 1 | 45  | 45 | 9       | 129     | 8.3e+6 | 37.8    | 271  | 0.83            | 0.88       | 189 | 0.66             | 0.00             |
| J | 75  | 19 | 12      | 194     | 4.1e+6 | 23.6    | 184  | 0.74            | 0.63       | 201 | 0.91             | 0.00             |
| K | 75  | 38 | 13      | 177     | 1.6e+7 | 55.3    | 211  | 0.98            | 0.81       | 146 | 0.95             | 0.00             |
| L | 75  | 75 | 14      | 202     | 6.3e+7 | 190     | 488  | 2.11            | 0.62       | 193 | 1.03             | 0.00             |
| Μ | 100 | 25 | 17      | 236     | 1.2e+7 | 42.1    | 369  | 1.50            | 0.74       | 154 | 1.19             | 0.00             |
| Ν | 100 | 50 | 21      | 258     | 4.9e+7 | 139     | 375  | 1.13            | 0.88       | 102 | 0.04             | 0.01             |

Instances adapted from Goetschalckx and Jacobs-Blecha (1989)

| Outlines | Problem | Literature | PBF  | P&B   | SEAF | Experimentation |
|----------|---------|------------|------|-------|------|-----------------|
| 0        | 00      | 0          | 0000 | 00000 | 000  | 00000000000000  |

Tests on the general problem (large instances)

|     |     |         |         | PBF     |                 | SEAF       |      |       |                  |                  |      |      |
|-----|-----|---------|---------|---------|-----------------|------------|------|-------|------------------|------------------|------|------|
| 1   | Ε   | $k_1^h$ | $k_2^h$ | R       | t <sub>NA</sub> | $	au_{NA}$ | cut  | N     | gap <sub>B</sub> | gap <sub>A</sub> | tr   | gapr |
| 72  | 37  | 55      | 494     | 1.5e+7  | 3.4             | 0.42       | 184  | 0     | 0.88             | 0.00             | 3.48 | 0.00 |
| 108 | 20  | 56      | 503     | 9.9e+6  | 6.9             | 0.66       | 209  | 1708  | 1.56             | 0.01             | 1.33 | 0.97 |
| 103 | 44  | 54      | 489     | 3.9e+7  | 7.6             | 0.83       | 113  | 3381  | 0.70             | 0.02             | 1.48 | 0.20 |
| 192 | 16  | 143     | 1283    | 1.7e+7  | 53              | 1.23       | 192  | 3198  | 0.37             | 0.02             | 3.75 | 0.58 |
| 75  | 175 | 131     | 1177    | 3.5e+8  | 64              | 1.49       | 276  | 2146  | 0.29             | 0.02             | 4.10 | 1.31 |
| 28  | 298 | 225     | 2016    | 1.2e+8  | 17              | 1.72       | 484  | 1928  | 0.36             | 0.02             | 18.1 | 0.17 |
| 196 | 196 | 146     | 1311    | 2.7e+9  | 183             | 1.93       | 1247 | 3792  | 0.26             | 0.01             | 10.3 | 0.87 |
| 144 | 335 | 251     | 2256    | 4.5e+9  | 429             | 2.11       | 1283 | 3901  | 0.25             | 0.02             | 11.6 | 1.35 |
| 258 | 254 | 147     | 1316    | 8.3e+9  | 536             | 2.44       | 1304 | 16588 | 0.31             | 0.01             | 13.9 | 1.11 |
| 392 | 168 | 218     | 1954    | 8.5e+9  | 263             | 2.66       | 1202 | 1803  | 0.34             | 0.01             | 13.7 | 0.40 |
| 500 | 85  | 380     | 341     | 3.3e+9  | 270             | 2.36       | 974  | 1755  | 0.11             | 0.01             | 17.5 | 0.38 |
| 438 | 188 | 329     | 2958    | 1.3e+10 | 338             | 2.50       | 1334 | 5598  | 0.15             | 0.01             | 21.2 | 0.52 |
| 490 | 210 | 271     | 2437    | 1.9e+10 | 612             | 2.81       | 1477 | 9525  | 0.22             | 0.01             | 21.2 | 0.39 |
| 251 | 585 | 432     | 3881    | 4.1e+10 | 1929            | 2.97       | 874  | 41456 | 0.16             | 0.02             | 35.9 | 6.44 |
| 140 | 775 | 579     | 5205    | 2.1e+10 | 2526            | 3.82       | 3927 | 7609  | 0.17             | 0.06             | 56.1 | 9.97 |
| 500 | 500 | 276     | 2482    | 1.2e+11 | 2050            | 3.77       | 924  | 6684  | 0.22             | 0.01             | 514  | —    |

Instances adapted from Uchoa et al. (2017)

Conclusion

### Flexibility levels and routing costs

Literature

The larger the flexibility, the larger the savings in routing costs;

P& B

SFAF

Experimentation

00000000000000

Conclusion

This effect may be counter-balanced by the penalties;

PRF

Results on medium-sized instances by the (SEAF-r) and (SEAF);

#### 9 flexibility configurations:

Outlines

Problem

- ► *F*<sub>0</sub>: all customers have no flexibility;
- ▶ F1: 25% of medium-flexibility customers, 75% of inflexible customers;
- ▶  $F_2$ : 50% of medium-flexibility customers, 50% of inflexible customers;
- ▶  $F_3$ : 75% of medium-flexibility customers, 25% of inflexible customers;
- ► *F*<sub>4</sub>: all customers have medium flexibility;
- ► F<sub>5</sub>: 25% of high-flexibility customers, 75% of medium-flexibility customer;
- $\blacktriangleright$  F<sub>6</sub>: 50% of high-flexibility customers, 50% of medium-flexibility customer;
- ▶ F<sub>7</sub>: 75% of high-flexibility customers, 25% of medium-flexibility customer;
- ► F<sub>8</sub>: all customers have high flexibility.

 Outlines
 Problem
 Literature
 PBF
 P&B
 SEAF
 Experimentation
 Conclusion

 0
 00
 0
 0000
 0000
 000
 000
 000
 00

Flexibility levels and routing costs

(SEAF-r) vs (SEAF) on the former configurations;

(*SEAF*) with 3 settings of penalties  $f_v^{h-}$  and  $f_v^{h+}$ : 10% (low), 20% (medium) and 50% (high) of the cost of a direct trip to serve customer v by a two-container truck;

Average saving among all medium-sized instances:

|            | $ F_0, F_1 $ | $F_1, F_2$ | $F_2, F_3 \mid$ | F <sub>3</sub> , F <sub>4</sub> | $F_4, F_5$ | $F_{5}, F_{6}$ | F <sub>6</sub> , F <sub>7</sub> | F <sub>7</sub> , F <sub>8</sub> | Average | $F_0, F_8$ |
|------------|--------------|------------|-----------------|---------------------------------|------------|----------------|---------------------------------|---------------------------------|---------|------------|
| (SEAF-r)   | 2.58         | 4.60       | 3.88            | 4.63                            | 3.55       | 4.00           | 3.93                            | 3.56                            | 3.84    | 26.25      |
| (SEAF) 10% | 4.95         | 4.95       | 2.98            | 4.52                            | 3.31       | 3.84           | 3.71                            | 3.67                            | 3.99    | 26.84      |
| (SEAF) 20% | 1.66         | 1.52       | 1.90            | 2.01                            | 2.08       | 1.66           | 0.56                            | 1.75                            | 1.64    | 12.70      |
| (SEAF) 50% | 0.12         | 0.07       | 0.25            | 0.12                            | 0.52       | 0.29           | 0.50                            | 0.16                            | 0.25    | 2.23       |

(SEAF-r): Flexibility decrease routing costs by 26.25%!!!

(SEAF): Costs can decrease further, but penalties need to be set "not too high".



#### Flexibility levels and routing costs

Small increase in flexibility means small decrease in costs for the carrier and high benefits for customers



| Outlines | Problem | Literature | PBF  | P&B   | SEAF | Experimentation | Conclusior |
|----------|---------|------------|------|-------|------|-----------------|------------|
| 0        | 00      | 0          | 0000 | 00000 | 000  | 0000000000      | 00         |

#### Flexibility levels and routing costs



▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

| Outlines | Problem | Literature | PBF  | P&B   | SEAF | Experimentation | Conclusion |
|----------|---------|------------|------|-------|------|-----------------|------------|
| 0        | 00      | 0          | 0000 | 00000 | 000  | 00000000000     | •0         |
| Conclu   | ision   |            |      |       |      |                 |            |

#### Key message:

 Choose strong formulations formulations of discrete optimization problems to solve them effectively;

#### **Specific results:**

- ▶ (SEAF) is the best formulation for this new drayage problem;
- Quantification of the possible savings by convincing customers to take a more flexible stance about service time;

#### Future research:

- (SEAF) by structured versions of the Dantzig-Wolfe decomposition algorithm;
- A richer problem setting.

| Outlines | Problem | Literature | PBF  | P&B   | SEAF | Experimentation | Conclusion |
|----------|---------|------------|------|-------|------|-----------------|------------|
| 0        | 00      | 0          | 0000 | 00000 | 000  | 000000000000    | 0.         |

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

# Thank you for your attention. Questions?