Optimal deployment of security virtual functions in

Software-Defined Networks (SDN)

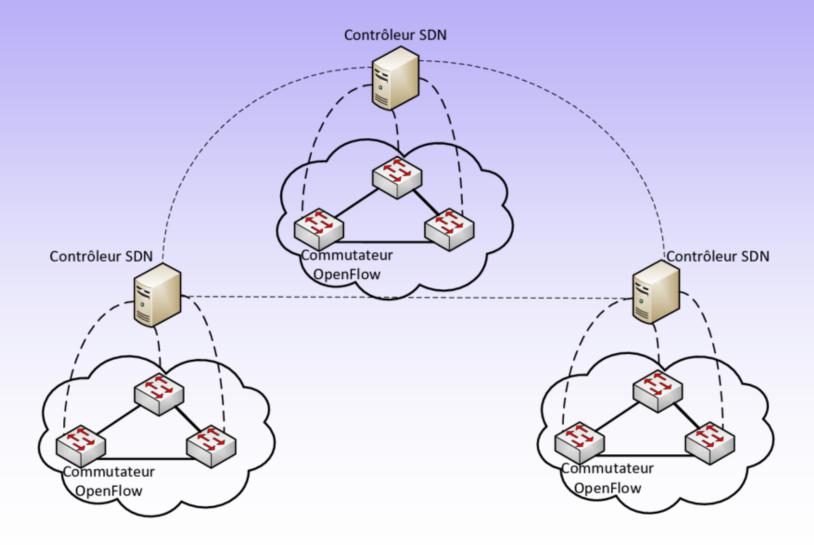
Sonia Vanier*, Céline Gicquel**,

° KahinaLazri, Alexandros Papadimitriou

* Université de Paris I Panthéon-Sorbonne, ** Université Paris Saclay

° Orange Labs Products & Services, Security Department

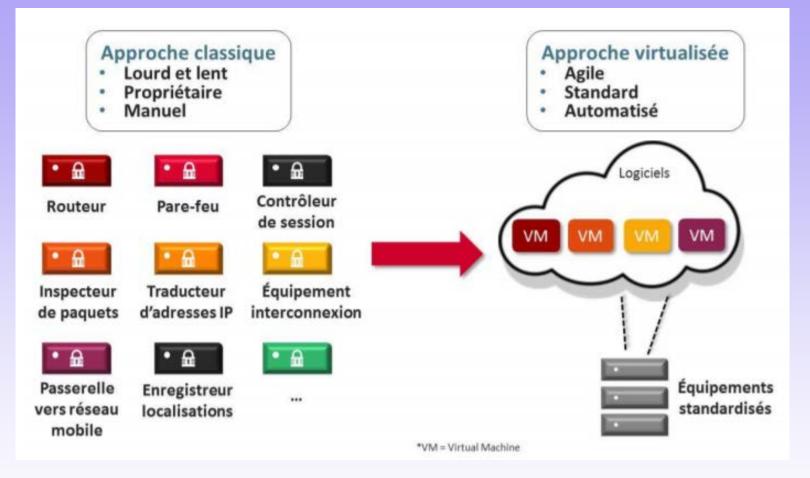
CTW 2020



Summary

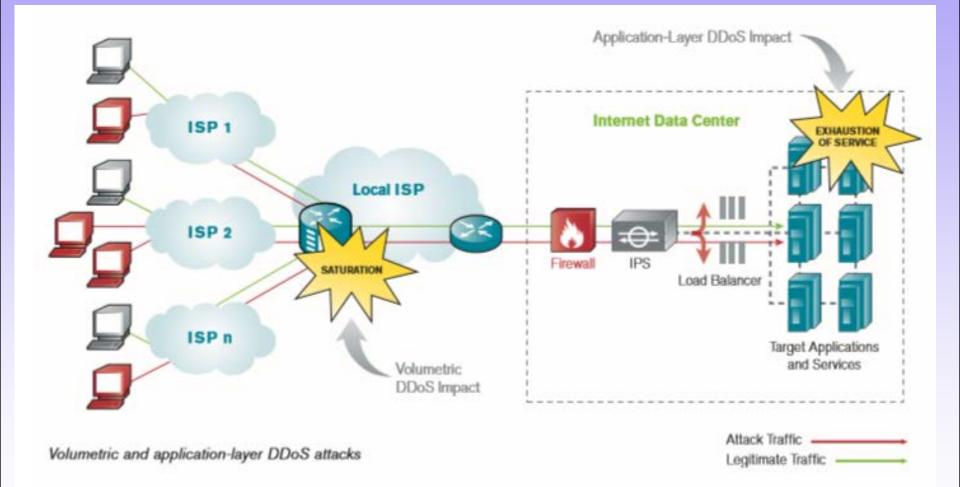
- Problem description:
 - Software Defined Networking (SDN)
 - Virtual Network Functions for security services
 - What is a Distributed Denial of Service attack?
- Mathematical Formulation
- Solution Approach
- Numerical Results
- Conclusion

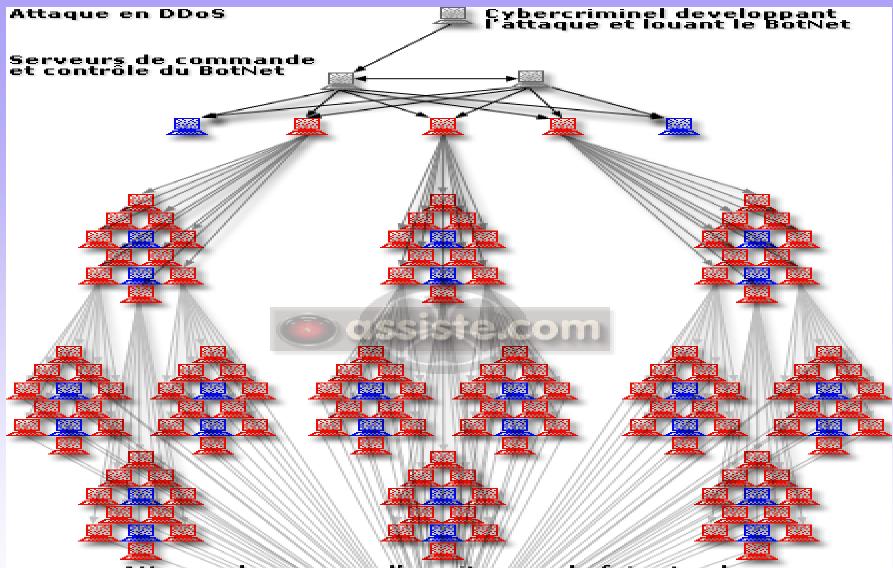
Software Defined Networking (SDN)


• **SDN** attempts to **centralize network management** in one network component by disassociating the forwarding process of network packets from the routing process.

Software Defined Networking (SDN)

- SDN architecture is an approach to cloud computing that facilitates network management and enables programmatically efficient network configuration in order to **improve network performance and monitoring.**
- SDN is an architecture that provides support for virtual machine mobility independent of the physical network.
- Network Function Virtualization (NFV): may consist of one or more virtual machines running different software and processes, on top of standard high-volume servers, switches and storage devices, or even cloud computing infrastructure, instead of having custom hardware appliances for each network function.

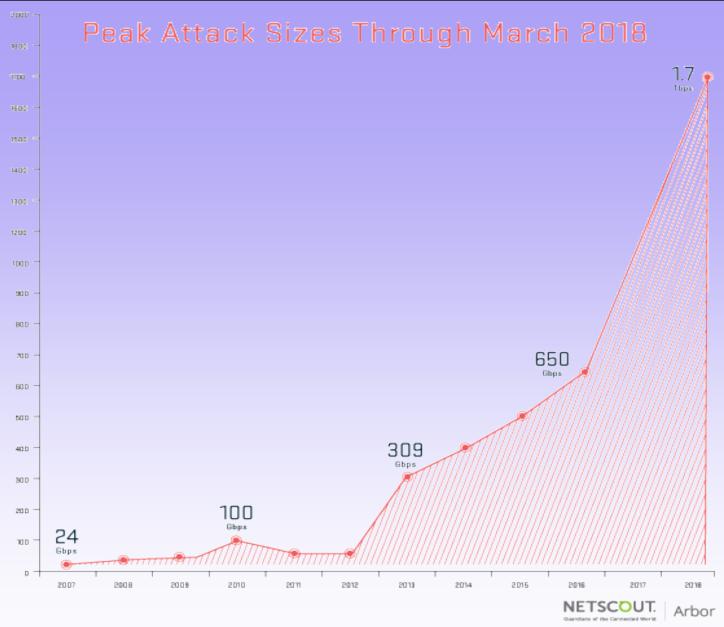

Network Functions Virtualization (NFV)



Virtualisation de fonctions réseaux

What is a DDoS Attack?

What is a DDoS attack?



Attaque du serveur d'un site pour le faire tomber Attaque politique ou revendicative, ou militante Attaque cybercriminelle maffieuse avec demande de rançon

Machines saines (résistantes car protégées)

Zombies infectés

Serveur attaqué en DDoS

The record saved by Arbor Networks

NFV placement for Defense against DDoS

- Problem Formulation:
 - Given the topology of the network, with transmission capacities on links and computing resources at nodes
 - A set of source-target DDoS attacks
 - We are interested in the problem of optimal placing filtering NFVs on network nodes
 - NFVs filter the malicious traffic by differentiating legitimate packets from illegitimate packets.
 - Placement of NFVs must progressively and completely filter attacking traffic while minimizing the total cost of deployed NFVs.

Mathematical models

• Routing of DDoS attacks is not known

 With the advent of 5G/6G networks and ISPs (Internet Service Providers), operators are preparing to lease parts of their physical networks to service providers. Service providers will apply their own routing algorithms to route traffic on their leased network.

• First part of the project:

- We developed single level MILP model allowing high level of security but can induce high investments costs, resolved with constraints generation approach
- S Haddad-Vanier, C Gicquel, L Boukhatem, K Lazri, and P Chaignon. Virtual network functions placement for defense against distributed denial of service attack. In Proceedings of the 8th ICORES, pages 42-150, 2019.

• Second part of the project:

 We propose a bilevel formulation which offers a compromise between the achieved security and the costs of NFVs. This approach reduces costs while ensuring a satisfactory level of security.

Mathematical models

- Since the routing of DDoS attacks is unknown, each NFV placement solution is evaluated against the "worst routing" of the malicious flow.
- Bilevel model: security in "the worst case"
 - First level: Leader problem
 - Decide the NFV placement
 - Second level: Follower problem
 - According to the NFVs installed at the first level,
 - determine a routing of the malicious flow allowing as much traffic as possible to reach its target.

Problem Formulation

• Given

- **G** = (**V**, **E**) which models the topology of the network
- **b**_e : transmission capacity of each link **e**
- Set A of DDoS attacks, $a \in A$ corresponds to an illegitimate traffic of value ψ^a Mbps from source s^a to target t^a
- Let \wp^a be the set of all potential paths between s^a and t^a
- A set of *N* type of NFV to install
 - ϕ^n the filtering capacity of each NFV $n \in N$
 - γ^{rn} resource consumption related to NFV deployment
 - K^n cost of NFN $n \in N$
- cap^r_v: resources available at each node (CPU, Memory etc..)

• Decide the optimal placement of NFVs such as

- All attacking traffic is filtered
- The total cost is minimal

Mathematical Formulation

• Decision variables:

- X^{n}_{v} = number of NFVs of type **n** placed at node **v**
- ϕ^{a}_{v} = filtering capacity dedicated for attack **a** at node **v**
- f_{p}^{a} = illegitimate flow of attack **a** routed on path **p**
- $z_v^a = 1$ if there is a positive flow of attack **a** filtered at node v, 0 otherwise.
- Constraints:
 - computing resources available at each node
 - NFV filtering capacities at each node
 - Filtering constraints of all malicious traffic
- Goal:
 - Minimize the total cost of deploying NFVs

Leader problem

- Decide NVF placement: compute Xⁿ_v and φ^a_v values
- Minimize NVF total Cost

Follower problem

- Given φ_v^a decided by the Leader
- Compute the worst routing f^a_p of attacks
- Maximize total unfiltered malicious flow

• Objectif: $\mathbf{Z} = \min \sum_{\mathbf{v}} \sum_{\mathbf{n}} \mathbf{K}^{\mathbf{n}} \mathbf{X}^{\mathbf{n}}_{\mathbf{v}}$

- **Objectif:** $\mathbf{Z} = \min \sum_{v} \sum_{n} \mathbf{K}^{n}_{v} \mathbf{X}^{n}_{v}$
- Under the constraints:
 - Consumption constraints of each resource r at each node v

 $\sum_{n} \gamma^{rn} X_{v}^{n} \leq \operatorname{cap}_{v}^{r} \forall v \in V \text{ and } \forall r \in R$

- **Objectif:** Min $z = \sum_{v} \sum_{n} \mathbf{K}_{v}^{n} \mathbf{X}_{v}^{n}$
- Under the constraints:
 - Consumption constraints of each resource r at each node v $\sum x^{rn} \mathbf{V}^n \leq conr$

 $\sum_{n} \gamma^{rn} X_{v}^{n} \leq cap_{v}^{r} \qquad \forall v \in V \text{ and } \forall r \in R$

 $\begin{array}{l} - \text{ NFV filtering capacity constraints at each node v} \\ \sum_a \phi^a{}_v \leq \sum_n \phi^n X^n{}_v \quad \forall v \in V \end{array}$

$$\varphi^{a}_{t} = 0$$
 $\forall a \in A$

- **Objectif:** Min $z = \sum_{v} \sum_{n} \mathbf{K}_{v}^{n} \mathbf{X}_{v}^{n}$
- Under constraints:

Consumption constraints of each resource r at each node v

 $\sum_{n} \gamma^{rn} X_{v}^{n} \leq cap_{v}^{r} \qquad \forall v \in V \text{ and } \forall r \in R$

 $\begin{array}{ll} - & \mathbf{NFV \ filtering \ capacity \ constraints} \\ & & \sum_{a} \phi^{a}{}_{v} \leq & \sum_{n} \phi^{n} \ X \ {}^{n}{}_{v} & \forall \ v \in V \\ \\ & & \phi^{a}{}_{t} \ = 0 & \forall a \in A \end{array}$

Filtering constraints of total damage inflicted to the attack targets
 D = 0

- X_v^n integer, $\varphi_v^a \ge 0$, $(X, \varphi) \in Z_v^{NV} \times R_v^{AV}$

• D the optimal value of follower problem:

$$\begin{aligned} & \operatorname{Max} \sum_{a} \left(\sum_{p} \mathbf{f}^{a}{}_{p} - \sum_{v} \mathbf{z}^{a}{}_{v} \boldsymbol{\phi}^{a}{}_{v} \right) \\ & \operatorname{Subject to} \\ & \operatorname{Link \ capacity \ constraints} \ \forall \ e \in \mathbf{E} \\ & \quad \sum_{a} \sum_{p} \mathbf{f}^{a}{}_{p} \leq \mathbf{b}_{e} \end{aligned}$$

Routing constraints for each attack $a \in A$

$$\sum_{\mathbf{p}} \mathbf{f}^{\mathbf{a}}_{\mathbf{p}} \leq \mathbf{\psi}^{\mathbf{a}}$$

$$\mathbf{z}_{v}^{a} \geq \left[\sum_{v \in p} \mathbf{f}_{p}^{a} / \psi^{a} \right] \forall a \in A \forall v \in V$$

• $\mathbf{z}_{v}^{a} \in \{0,1\}, \mathbf{f}_{p}^{a} \ge 0 \forall v \in V, a \in A, p \in \mathcal{P}^{a}$

$$Z_{BL}^{*} = \min \sum_{v \in V} \sum_{n \in N} K^{n} x_{v}^{n}$$

$$\sum_{n \in N} \gamma^{rn} x_{v}^{n} \leq Cap_{v}^{r}$$

$$\sum_{a \in A} \varphi_{v}^{a} \leq \sum_{n \in N} \phi^{n} x_{v}^{n}$$

$$\varphi_{t^{a}}^{a} = 0$$

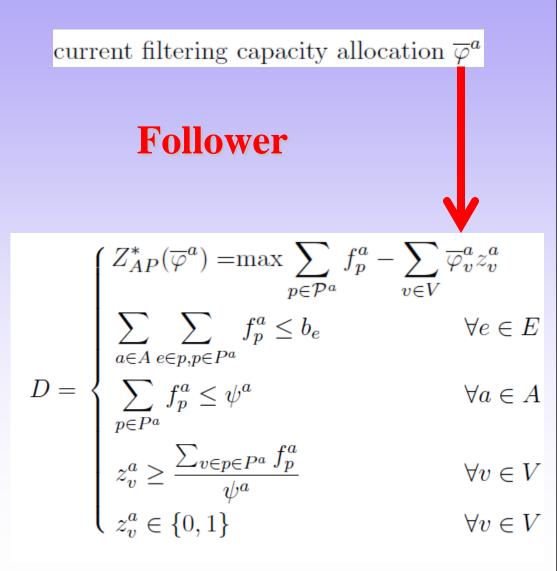
$$D = 0$$

$$(x, \varphi) \in \mathbb{Z}_{+}^{NV} \times \mathbb{R}_{+}^{AV}$$

$$Follower$$

$$D = \begin{cases} \max \sum_{a \in A} (\sum_{p \in P^{a}} f_{p}^{a} - \sum_{v \in V} z_{v}^{a} \varphi_{v}^{a}) \\ \sum_{p \in P^{a}} \sum_{p \in P^{a}} f_{p}^{a} \leq b_{e} \\ \sum_{p \in P^{a}} f_{p}^{a} \leq \psi^{a} \\ z_{v}^{a} \geq \sum_{v \in p \in P^{a}} f_{p}^{a} \\ z_{v}^{a} \in \{0, 1\} \end{cases}$$

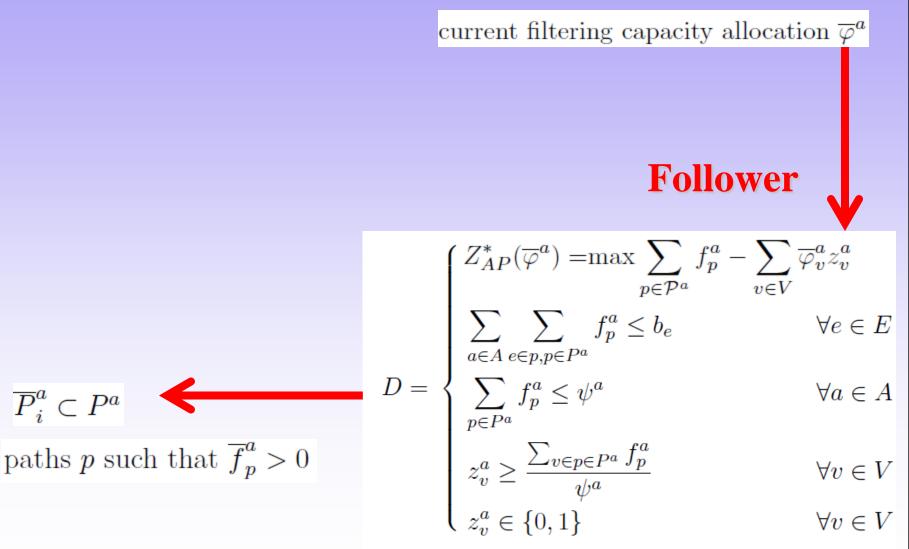
۰.


 $\forall v \in V$ $\forall v \in V$

 $\forall e \in E$

 $\forall a \in A$

Decomposition approach


Leader

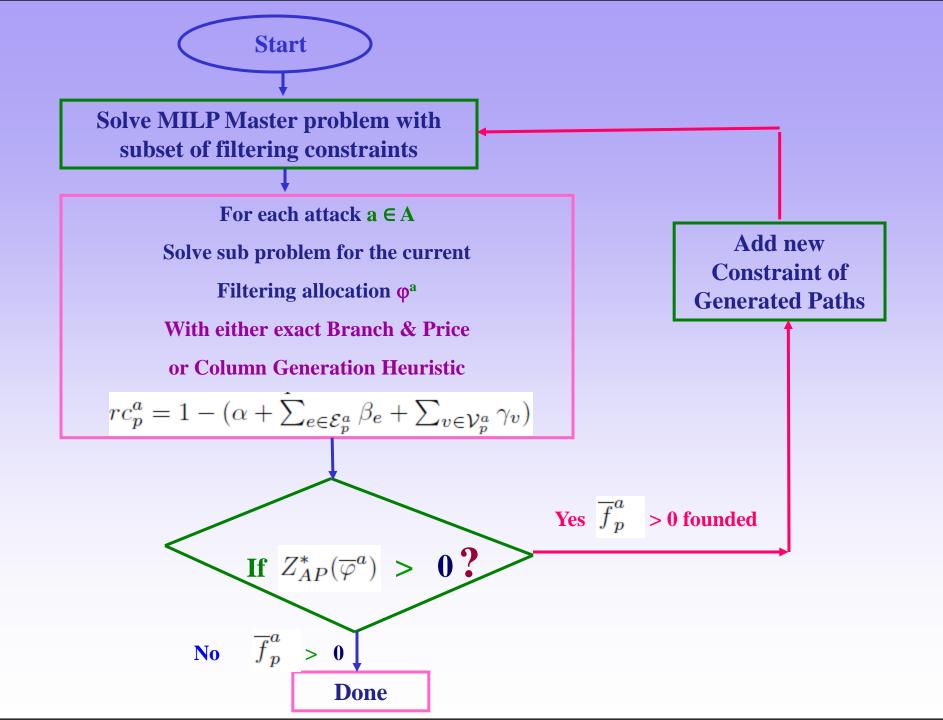
Decomposition approach

 $\overline{P}_i^a \subset P^a$

Leader

Leader

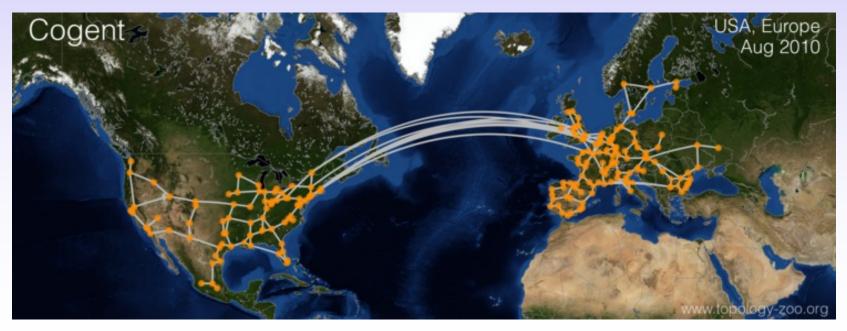
D =

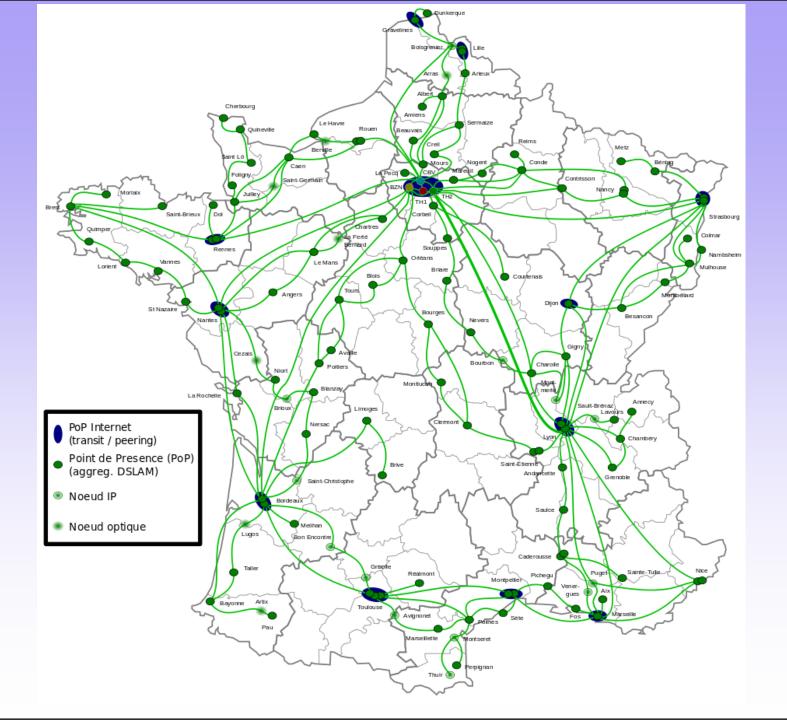

$$\begin{split} \sum_{v \in V(\overline{P}_i^a)} \varphi_v^a &\geq \sum_{p \in \overline{P}_i^a} \overline{f}_p^a \\ \text{Add the filtering constraint} \\ \\ \overline{P}_i^a \subset P^a \\ \text{paths } p \text{ such that } \overline{f}_p^a > 0 \end{split}$$

$$Follower$$

$$\begin{cases}
Z_{AP}^{*}(\overline{\varphi}^{a}) = \max \sum_{p \in \mathcal{P}^{a}} f_{p}^{a} - \sum_{v \in V} \overline{\varphi}_{v}^{a} z_{v}^{a} \\
\sum_{a \in A} \sum_{e \in p, p \in P^{a}} f_{p}^{a} \leq b_{e} \qquad \forall e \in E \\
\sum_{p \in P^{a}} f_{p}^{a} \leq \psi^{a} \qquad \forall a \in A \\
\sum_{p \in P^{a}} f_{p}^{a} \leq \psi^{a} \qquad \forall a \in A \\
z_{v}^{a} \geq \frac{\sum_{v \in p \in P^{a}} f_{p}^{a}}{\psi^{a}} \qquad \forall v \in V \\
z_{v}^{a} \in \{0, 1\} \qquad \forall v \in V
\end{cases}$$

 $Z^*_{BL} = \min \sum_{v \in V} \sum_{n \in N} K^n x^n_v$ $\sum_{n \in N} \gamma^{rn} x_v^n \le Cap_v^r$ $n \in N$ $\sum \varphi_v^a \le \sum \phi^n x_v^n$ $a \in A$ $n \in N$ $\varphi^a_{t^a} = 0$ $\sum_{v \in V(\overline{P}_i^a)} \varphi_v^a \ge \sum_{p \in \overline{P}_i^a} \overline{f}_p^a$ Add the filtering constraint $\overline{P}^a_i \subset P^a$ paths p such that $\overline{f}_p^a > 0$


Leader current filtering capacity allocation $\overline{\varphi}^a$ $D = \begin{cases} Z_{AP}^{*}(\overline{\varphi}^{a}) = \max \sum_{p \in \mathcal{P}^{a}} f_{p}^{a} - \sum_{v \in V} \overline{\varphi}_{v}^{a} z_{v} \\ \sum_{a \in A} \sum_{e \in p, p \in P^{a}} f_{p}^{a} \leq b_{e} & \forall e \in E \\ \sum_{a \in A} f_{p}^{a} \leq \psi^{a} & \checkmark \\ \sum_{p \in P^{a}} f_{p}^{a} \leq \psi^{a} & \checkmark \\ z_{v}^{a} \geq \frac{\sum_{v \in p \in P^{a}} f_{p}^{a}}{\psi^{a}} \\ z_{v}^{a} \in \{0, 1\} \end{cases}$



- Instances:
 - https://github.com/Orange-OpenSource/synthetic-tm-generator
 - https://fr.wikipedia.org/wiki/Free_(entreprise)#/media/File:Proxad_FR.svg
 - Internet Topology Zoo, http://www.topology-zoo.org/dataset.html
 - On-Demand EC2 prices, https://aws.amazon.com/fr/ec2/pricing/ondemand/
 - All tests were run on a an Intel Core i5 (1.9GHz) with 16 GB of RAM, running under Windows 10 using Cplex 12.8.9.

We use 4 internet network topologies

- **BICS**: |V|=32, |E|=48
- IntelliFiber: |V|=73, |E|=96
- **Colt Telecom**: |V|=153 , |E|= 179
- **Cogentco**: |V|=196, |E|=245

And one Free network topology **Free**: |V|=120, |E|=167

- Number of source-target pairs was set to $A \in \{5,10,15,20\}$
 - We considered different sources and a single target randomly selected.
- For each considered network topology and value of A, we randomly generated 5 instances, leading to a total of 100 instances.

			E	XACT					HEUR		
Topology	A	Cost	#IT	#FC	Time(s)	Cost	#IT	#FC	Time(s)	#Inf	Max% UF
BICS	5	1144	12	39	7	1144	12	35	1	0	0.00%
	10	4004	11	41	9	4004	12	43	3	2	0.76%
	15	5590	11	56	12	5590	11	58	58	1	1.81%
	20	7150	15	77	23	7150	16	81	4	0	0.00%
IntelliFiber	5	1508	10	25	7	1508	10	26	2	0	0.00%
	10	2392	13	55	19	2392	13	53	4	0	0.00%
	15	3874	16	83	34	3874	17	85	9	3	0.43%
	20	4290	14	103	39	4290	15	108	11	0	0.00%
Free	5	1482	7	16	5	1482	7	16	5	0	0.00%
	10	3042	8	32	13	3042	9	34	6	1	0.13%
	15	3822	9	49	21	3822	8	47	9	0	0.00%
	20	4680	8	67	26	4680	11	73	16	1	0.11%
Colt Telecom	5	1768	11	31	21	1768	10	27	9	0	0.00%
	10	2522	14	65	35	2522	12	51	14	3	0.29%
	15	3042	19	117	81	3042	18	115	35	2	0.44%
	20	5564	22	153	124	5564	25	159	77	3	1.00%
Cogentco	5	1040	26	73	65	1040	21	66	26	0	0.00%
	10	2002	53	231	586	2002	40	194	3534	3	1.71%
	15	3978	46	268	494	3978	43	249	696	3	3.02%
	20	4680	53	419	765	4680	50	379	2319	4	1.12%

		LCG			DEC					
Topology	V	E	Cost	Time(s)	Cost	#IT	#FC	Time(s)		
Goodnet	17	31	1473	0.3	858	6	22	1.2		
BICS	33	48	1690	0.6	754	12	51	3.2		
IntelliFiber	73	96	1737	2.4	1040	10	44	5.2		
Free	120	167	1560	4.5	1014	6	22	6.6		
Cogentco	197	245	1950	12.5	767	24	99	44.8		

Conslusion

- In summary we talked about:
 - Security mechanisms against DDoS attacks that use the flexibility and efficiency of network virtualization SDN and NFV.
 - The proposed bilevel formulation of the problem offers a compromise between the achieved security and the costs of NFVs. This approach reduces significantly costs while ensuring a high level of security.
 - The decomposition algorithm efficiently solved the generated instances

Future work :

- Develop a polyhedral study to improve the decomposition approach, generate new inequalities valid for both the master problem and the sub problem.
- Improve problem formulation in order to reduce costs, deepen research on bilevel and robust optimization approaches for security issues.
- Extend this work to the deployment of different virtual functions for new services in future heterogeneous networks.