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Context (I): Information Retrieval

With traditional verbatim browser:
• The output: linear information
• To refine information: perform a new search
• Complex query: can be hazardous
• Accessing other facets of the information space => perform different
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Context (II): Information space

But in fact:
• A space of information is multi-faceted
• Much more information is available or can be extracted
• Hb-graphs highlight how the data instances are linked and allow
additional information to be displayed
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Context: Facets of the Information Space

Facet choice

Authors Processed keywords Arxiv Categories

• Information space = interconnected networks of co-occurrences
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Multisets and Co-occurrences

Multisets:
Multiset: a universe and a multiplicity function Am = (A, m)
Natural multiset: the range of the multiplicity function is a subset of N.

In natural multisets: two views:
weighted set: Am =

{
xm1

1 , . . . , xmn
n

}
collection of objects Am =


x1, . . . , x1︸ ︷︷ ︸

m1 times

, . . . , xn, . . . , xn︸ ︷︷ ︸
mn times




=> a co-occurrence appears as a multiset
=> in literature, network of co-occurrences approximated with pairwise
relationships (graphs) or with the support of the multiset (hypergraphs)
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Hb-graphs

Hb-graph H = (V,E): family of multisets E = (ei)i∈I , with I = JpK- called hb-edges - where
the hb-edges have:
• same universe V = {v1, . . . , vn}, called vertex set.
• support a subset of V .
• each hb-edge has its own multiplicity function me : V →W where W ⊂ R+.

Incidence matrix of hb-graphs:

H = [mj (vi)]16i6n
16j6p

Different application of hb-graphs:
• Network of co-occurrences are hb-graphs
=> hb-graph framework for modeling information space
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ML interest of Hb-graphs

Exchange-based diffusion in hb-graphs: Ouvrard et al. [2018, 2019]
• Stochastic process
• Allows generalised random walk
• Defines a ranking of vertices and hb-edges (akin to PageRank)
• Enables coarsening of hb-graphs and thus data landscape
=> Diffusion used for doing aggregation ranking (talk of last year @ CTW 2019)
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Why a biased exchange-based diffusion?

• In standard exchange-based diffusion:
high m-cardinality & high m-degree => highly ranked
• But depending on the focus of the search:
different facets = different importance of the m-cardinality
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Related work

•Dehmer and Mowshowitz [2011]: abstract information function
f : V → R+ such that for every: vi ∈ V :

pf (vi) = f (vi)∑
j∈J|V |K

f (vj)
.

• Zlatić et al. [2010]: bias in the transition probability of a random walk in order
to explore communities in a network
Transition probability between vertex vi and vj given by:

Tij (x, β) = aije
βxi∑

l

aljeβxl
,

where A = (aij)i,j∈JnK is the adjacency matrix of the graph and β is a
parameter.
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Biased exchange-based diffusion in hb-graphs I

Considered: a weighted hb-graph H = (V,E, we) with V = {vi : i ∈ JnK} and
E = (ej)j∈JpK ; we write H = [mej (vi)]i∈JnK

j∈JpK
the incidence matrix of the

hb-graph.
Vertex level
1. Vertex abstract information function and corresponding probability
• hb-edge based vertex abstract information function: fV : V × E → R+.
• vertex abstract information function: FV : V → R+ such that:
FV (vi)

∆=
∑
j∈JpK

fV (vi, ej) .

• probability corresponding to this hb-edge based vertex abstract information

as: pfV (ej |vi)
∆= fV (vi, ej)

FV (vi)
.

For instance: fV (vi, ej) = mj (vi)w (ej) and FV (vi) = dw,vi

=> retrieve the phase 1 of the exchange-based diffusion
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Biased exchange-based diffusion in hb-graphs II

2. Now, we introduce a bias on the abstract information:
• vertex bias function: gV : R+ → R+ applied to fV (vi, ej)
• biased probability on the transition from vertices to hb-edges defined as:

p̃V (ej |vi)
∆= gV (fV (vi, ej))

GV (vi)

In the exchange-based diffusion, we have used: gV (x) = x.
Typical choices for gV are: gV (x) = xα or gV (x) = eαx. When α > 0, higher
values of fV are encouraged, and on the contrary, when α < 0 smaller values
of fV are encouraged.
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Biased exchange-based diffusion in hb-graphs III

Hb-edge level
1. Hb-edge abstract information function and corresponding probability
• vertex-based hb-edge abstract information function: fE : E × V → R+.
• hb-edge abstract information function is defined as the function:
FE : V → R+, such that: FE (ej)

∆=
∑
i∈JnK

fE (ej , vi) .

• probability corresponding to the vertex-based hb-edge abstract information

is defined as: pfE (vi|ej)
∆= fE (ej , vi)

FE (ej)
.
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Biased exchange-based diffusion in hb-graphs IV

2. Now, we introduce a bias on the abstract information:
• hb-edge bias function: gE : R+ → R+ applied to fE (ej , vi) ,
• hb-edge overall bias defined as: GE (ej)

∆=
∑
i∈JnK

gE (fE (ej , vi)) .

• biased probability on the transition from hb-edges to vertices is defined as:

p̃E (vi|ej)
∆= gE (fE (ej , vi))

GE (ej)
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Biased exchange-based diffusion in hb-graphs V

Building a two-phase step diffusion by exchange:
•Vertices hold an information value at time t given by: αt : V → [0; 1] .
•Hb-edges hold an information value at time t given by: εt : E→ [0; 1] .
• Information value of vertices: It (V ) =

∑
vi∈V

αt (vi)

• Information value of hb-edges: It (E) =
∑

ej∈E
εt (ej)

• Information value of the hb-graph: It (H) = It (V ) + It (E) .
•Closed non dissipative system:
The hb-graph information value is kept constant overtime to 1.
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Biased exchange-based diffusion in hb-graphs VI
• Initialisation: vertices have the information:
α0 (vi) = αref = 1

|V |
. Hence: ej ∈ E, ε0 (ej) = 0.

• Two phases per time step:

• From t to t+ 1
2 : vertices distribute their values to hb-edges:

δεt+ 1
2

(ej |vi) = p̃V (ej |vi)αt (vi)

εt+ 1
2

(ej) =
n∑
i=1

δεt+ 1
2

(ej | vi)

αt+ 1
2

(vi) = 0

• From t+ 1
2 and t+ 1: hb-edges distribute their values to vertices:

δαt+1 (vi | ej) = p̃E (vi|ej) εt+ 1
2

(ej) .

αt+1 (vi) =
p∑
j=1

δαt+1 (vi | ej) εt+1 (ej) = 0.
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Biased exchange-based diffusion in hb-graphs VII

To summarize (... details on Arxiv):

PE,t+ 1
2

= PV,tG
−1
V BV . (1)

PE,t+ 1
2
G−1

E BE = PV,t+1. (2)

PV,t+1 = PV,tG
−1
V BVG

−1
E BE . (3)

•Writing T = G−1
V BVG

−1
E BE , it follows from 3:

PV,t+1 = PV,tT.

• T is a square row stochastic matrix of dimension n.
Assuming that the hb-graph is connected, the biased feature exchange-based
diffusion matrix T is aperiodic and irreducible.
The fact that T is a stochastic matrix aperiodic and irreducible for a connected
hb-graph ensures that (αt)t∈N converges to a stationary state which is the
probability vector πV associated to the eigenvalue 1 of T .
No explicit expression of the stationary state vector
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Results and evaluation I

Experiment 1 2 3 4 5
Vertex bias function gV (x) = x x2 x0.2 e2x e−2x

Hb-edge bias function gE (x) = x x2 x0.2 e2x e−2x

Experiment 6 7 8 9 10
Vertex bias function gV (x) = x2 e2x x0.2 e−2x x

Hb-edge bias function gE (x) = x x x x x2

Experiment 11 12 13 14 15
Vertex bias function gV (x) = x x x e2x e−2x

Hb-edge bias function gE (x) = e2x x0.2 e−2x e−2x e2x

Table 1: Biases used during the 15 experiments.
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Results and evaluation II

(a) Strict Kendall tau correlation coefficient (b) Large Kendall tau correlation coefficient

for node ranking with biases. Realized on 100 random hb-graphs with 200 hb-edges of maximal size 20, with 5 groups.
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Results and evaluation III

(a) Strict Kendall tau correlation coefficient (b) Large Kendall tau correlation coefficient

for hb-edge ranking with biases. Realized on 100 random hb-graphs with 200 hb-edges of maximal size 20, with 5 groups.
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Results and evaluation IV

(a) First ranking: gV (x) = x and gE (x) = x; Second ranking: gV (x) = e2x and gE (x) = e2x.

(b) First ranking: gV (x) = x and gE (x) = x; Second ranking: gV (x) = x2 and gE (x) = x2.
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Results and evaluation V

(c) First ranking: gV (x) = x and gE (x) = x; Second ranking: gV (x) = e−2x and

gE (x) = e−2x.

(d) First ranking: gV (x) = x and gE (x) = x; Second ranking: gV (x) = x0.2 and

gE (x) = x0.2. 21/24



Conclusion & Future work

With these first results:
• There is an interest to apply different biases to explore differently the hb-graph => impact on
hb-edges and nodes ranking
• Tunable diffusion to tune adequately the ranking of the facets
As FW:
Apply this approach to real cases:
• a publication database for refining queries
• an image case
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Thank you for your attention!

Leveraging insight into your data network by viewing co-occurrences while navigating
across different perspectives.

More information:
• http://collspotting.web.cern.ch
• https://www.infos-informatique.net
• xavier.ouvrard@cern.ch
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