Biased Diffusion in Hyper-Bag-Graphs CTW 2020 Online conference 16.09.2020

Xavier Ouvrard¹, Jean-Marie Le Goff¹, Stéphane Marchand-Maillet²

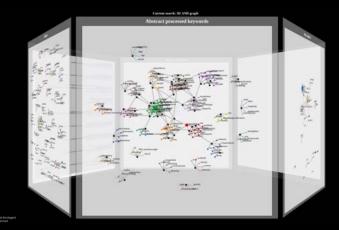
www.infos-informatique.net

Context (I): Information Retrieval

With traditional verbatim browser:

- The output: linear information
- To refine information: perform a new search
- Complex query: can be hazardous
- Accessing other facets of the information space => perform different searches

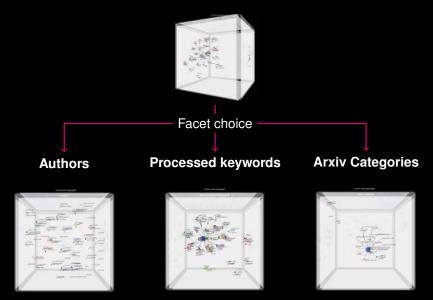
Context (II): Information space



But in fact:

- A space of information is multi-faceted
- Much more information is available or can be extracted
- Hb-graphs highlight how the data instances are linked and allow additional information to be displayed

Context: Facets of the Information Space



• Information space = interconnected networks of co-occurrences

Multisets and Co-occurrences

Multisets:

Multiset: a universe and a multiplicity function $\mathfrak{A}_m = (A, m)$

Natural multiset: the range of the multiplicity function is a subset of \mathbb{N} .

In natural multisets: two views:

weighted set:
$$\mathfrak{A}_m = \left\{ x_1^{m_1}, \dots, x_n^{m_n} \right\}$$

collection of objects $\mathfrak{A}_m = \left\{ \left\{ \underbrace{x_1, \dots, x_1}_{m_1 \text{ times}}, \dots, \underbrace{x_n, \dots, x_n}_{m_n \text{ times}} \right\} \right\}$

=> a co-occurrence appears as a multiset

=> in literature, network of co-occurrences approximated with pairwise relationships (graphs) or with the support of the multiset (hypergraphs)

Hb-graphs

Hb-graph $\mathcal{H} = (V, \mathfrak{E})$: family of multisets $\mathfrak{E} = (\mathfrak{e}_i)_{i \in I}$, with $I = \llbracket p \rrbracket$ - called **hb-edges** - where the hb-edges have:

- same universe $V = \{v_1, \ldots, v_n\}$, called vertex set.
- support a subset of V.
- each hb-edge has its own multiplicity function $m_{\mathfrak{e}}: V \to \mathbb{W}$ where $\mathbb{W} \subset \mathbb{R}^+$.

Incidence matrix of hb-graphs:

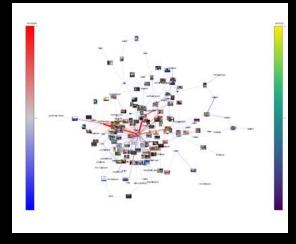
$$H = [m_j(v_i)]_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$$

Different application of hb-graphs:

Network of co-occurrences are hb-graphs

=> hb-graph framework for modeling information space

ML interest of Hb-graphs



Exchange-based diffusion in hb-graphs: Ouvrard et al. [2018, 2019]

- Stochastic process
- Allows generalised random walk
- Defines a ranking of vertices and hb-edges (akin to PageRank)
- Enables coarsening of hb-graphs and thus data landscape
- => Diffusion used for doing aggregation ranking (talk of last year @ CTW 2019)

Why a biased exchange-based diffusion?

• In standard exchange-based diffusion:

high m-cardinality & high m-degree => highly ranked

• But depending on the focus of the search:

different facets = different importance of the m-cardinality

Related work

• Dehmer and Mowshowitz [2011]: abstract information function $f: V \to \mathbb{R}^+$ such that for every: $v_i \in V$:

$$p^{f}(v_{i}) = \frac{f(v_{i})}{\sum_{j \in \llbracket |V| \rrbracket} f(v_{j})}$$

 Zlatić et al. [2010]: bias in the transition probability of a random walk in order to explore communities in a network

Transition probability between vertex v_i and v_j given by:

$$T_{ij}\left(x,\beta\right) = \frac{a_{ij}e^{\beta x_i}}{\sum\limits_{l} a_{lj}e^{\beta x_l}},$$

where $A = (a_{ij})_{i,j \in [\![n]\!]}$ is the adjacency matrix of the graph and β is a parameter.

Biased exchange-based diffusion in hb-graphs I

Considered: a weighted hb-graph $\mathfrak{H} = \{V, \mathfrak{E}, w_e\}$ with $V = \{v_i : i \in [n]\}$ and $\mathfrak{E} = (\mathfrak{e}_j)_{i \in \llbracket n \rrbracket}$; we write $H = [m_{\mathfrak{e}_i} (v_i)]_{i \in \llbracket n \rrbracket}$ the incidence matrix of the $j \in \llbracket p \rrbracket$

hb-graph.

Vertex level

1. Vertex abstract information function and corresponding probability • hb-edge based vertex abstract information function: $f_V: V \times E \to \mathbb{R}^+$. • vertex abstract information function: $F_V: V \to \mathbb{R}^+$ such that:

$$F_{V}(v_{i}) \stackrel{\Delta}{=} \sum_{j \in \llbracket p \rrbracket} f_{V}(v_{i}, \mathfrak{e}_{j}).$$

 probability corresponding to this hb-edge based vertex abstract information as: $p^{f_V}(\mathbf{e}_j|v_i) \stackrel{\Delta}{=} \frac{f_V(v_i, \mathbf{e}_j)}{F_V(v_i)}.$ For instance: $f_V(v_i, \mathfrak{e}_i) = m_i(v_i) w(\mathfrak{e}_i)$ and $F_V(v_i) = d_{w,v_i}$

=> retrieve the phase 1 of the exchange-based diffusion

Biased exchange-based diffusion in hb-graphs II

2. Now, we introduce a bias on the abstract information:

- vertex bias function: $g_V : \mathbb{R}^+ \to \mathbb{R}^+$ applied to $f_V(v_i, \mathfrak{e}_j)$
- biased probability on the transition from vertices to hb-edges defined as:

$$\widetilde{p_{V}}\left(\mathfrak{e}_{j}|v_{i}\right) \triangleq \frac{g_{V}\left(f_{V}\left(v_{i},\mathfrak{e}_{j}\right)\right)}{G_{V}\left(v_{i}\right)}$$

In the exchange-based diffusion, we have used: $g_V(x) = x$.

Typical choices for g_V are: $g_V(x) = x^{\alpha}$ or $g_V(x) = e^{\alpha x}$. When $\alpha > 0$, higher values of f_V are encouraged, and on the contrary, when $\alpha < 0$ smaller values of f_V are encouraged.

Hb-edge level

1. Hb-edge abstract information function and corresponding probability

• vertex-based hb-edge abstract information function: $f_E : E \times V \rightarrow \mathbb{R}^+$. • hb-edge abstract information function is defined as the function:

$$F_E: V \to \mathbb{R}^+$$
, such that: $F_E(\mathfrak{e}_j) \stackrel{\Delta}{=} \sum_{i \in \llbracket n \rrbracket} f_E(\mathfrak{e}_j, v_i)$.

• probability corresponding to the vertex-based hb-edge abstract information is defined as: $p^{f_E}(v_i|\mathfrak{e}_j) \stackrel{\Delta}{=} \frac{f_E(\mathfrak{e}_j, v_i)}{F_E(\mathfrak{e}_j)}$.

Biased exchange-based diffusion in hb-graphs IV

- 2. Now, we introduce a bias on the abstract information:
- hb-edge bias function: $g_E : \mathbb{R}^+ \to \mathbb{R}^+$ applied to $f_E(\mathfrak{e}_j, v_i)$,
- hb-edge overall bias defined as: $G_E(\mathfrak{e}_j) \stackrel{\Delta}{=} \sum_{i \in [\![n]\!]} g_E(f_E(\mathfrak{e}_j, v_i))$.

• biased probability on the transition from hb-edges to vertices is defined as:

$$\widetilde{p_{E}}\left(v_{i}|\mathbf{e}_{j}\right) \triangleq \frac{g_{E}\left(f_{E}\left(\mathbf{e}_{j}, v_{i}\right)\right)}{G_{E}\left(\mathbf{e}_{j}\right)}$$

Biased exchange-based diffusion in hb-graphs V

Building a two-phase step diffusion by exchange:

- Vertices hold an information value at time t given by: $\alpha_t: V \to [0,1]$.
- Hb-edges hold an information value at time t given by: $\epsilon_t : \mathfrak{E} \to [0; 1]$.
- Information value of vertices: $I_t(V) = \sum_{\sigma V} \alpha_t(v_i)$
- Information value of hb-edges: $I_t(\mathfrak{E}) = \sum_{\mathfrak{e}_j \in \mathfrak{E}} \epsilon_t(\mathfrak{e}_j)$
- Information value of the hb-graph: $I_{t}(\mathfrak{H}) = I_{t}(V) + I_{t}(\mathfrak{E})$.
- Closed non dissipative system:

The hb-graph information value is kept constant overtime to 1.

Biased exchange-based diffusion in hb-graphs VI

• Initialisation: vertices have the information:

 $\alpha_0(v_i) = \alpha_{\mathsf{ref}} = \frac{1}{|V|}$. Hence: $\mathfrak{e}_j \in \mathfrak{E}, \epsilon_0(\mathfrak{e}_j) = 0$.

• Two phases per time step:

• From t to $t + \frac{1}{2}$: vertices distribute their values to hb-edges:

$$\delta \epsilon_{t+\frac{1}{2}}\left(\mathfrak{e}_{j}|v_{i}\right) = \widetilde{p_{V}}\left(\mathfrak{e}_{j}|v_{i}\right)\alpha_{t}\left(v_{i}\right)$$

$$\begin{aligned} \epsilon_{t+\frac{1}{2}}\left(\mathfrak{e}_{j}\right) &= \sum_{i=1}^{n} \delta \epsilon_{t+\frac{1}{2}}\left(\mathfrak{e}_{j} \mid v_{i}\right) \\ \alpha_{t+\frac{1}{2}}\left(v_{i}\right) &= 0 \end{aligned}$$

• From $t + \frac{1}{2}$ and t + 1: hb-edges distribute their values to vertices: $\delta \alpha_{t+1} (v_i \mid \mathbf{e}_j) = \widetilde{p_E} (v_i \mid \mathbf{e}_j) \epsilon_{t+\frac{1}{2}} (\mathbf{e}_j)$. $\alpha_{t+1} (v_i) = \sum_{j=1}^p \delta \alpha_{t+1} (v_i \mid \mathbf{e}_j) \epsilon_{t+1} (\mathbf{e}_j) = 0.$

Biased exchange-based diffusion in hb-graphs VII

To summarize (... details on Arxiv):

$$P_{\mathfrak{E},t+\frac{1}{2}} = P_{V,t} G_V^{-1} B_V.$$
(1)

$$P_{\mathfrak{E},t+\frac{1}{2}}G_{\mathfrak{E}}^{-1}B_E = P_{V,t+1}.$$
(2)

$$P_{V,t+1} = P_{V,t} G_V^{-1} B_V G_{\mathfrak{E}}^{-1} B_E.$$
(3)

• Writing $T = G_V^{-1} B_V G_{\mathfrak{E}}^{-1} B_E$, it follows from 3:

$$P_{V,t+1} = P_{V,t}T.$$

• T is a square row stochastic matrix of dimension n.

Assuming that the hb-graph is connected, the biased feature exchange-based diffusion matrix T is **aperiodic and irreducible**. The fact that T is a stochastic matrix aperiodic and irreducible for a connected hb-graph ensures that $(\alpha_t)_{t \in \mathbb{N}}$ **converges to a stationary state** which is the probability vector π_V associated to the eigenvalue 1 of T. **No explicit expression of the stationary state vector**

Results and evaluation I

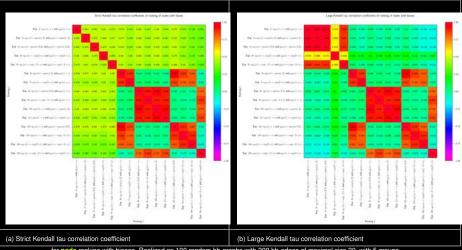
Experiment	1	2	3	4	5
Vertex bias function $g_{V}\left(x ight)=$					
Hb-edge bias function $g_E(x) =$					

Experiment	6	7	8	9	10
Vertex bias function $g_V(x) =$					
Hb-edge bias function $g_E(x) =$					

Experiment	11	12	13	14	15
Vertex bias function $g_{V}\left(x ight)=$					e^{-2x}
Hb-edge bias function $g_E(x) =$					e^{2x}

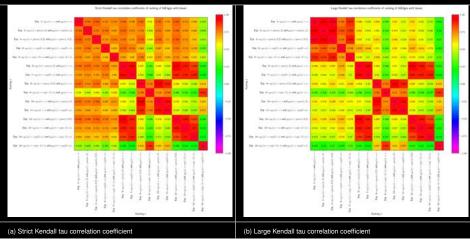
Biases used during the 15 experiments.

Results and evaluation II



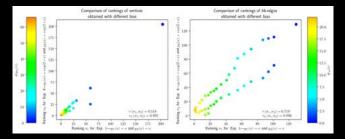
for node ranking with biases. Realized on 100 random hb-graphs with 200 hb-edges of maximal size 20, with 5 groups.

Results and evaluation III

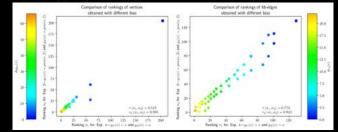


for hb-edge ranking with biases. Realized on 100 random hb-graphs with 200 hb-edges of maximal size 20, with 5 groups.

Results and evaluation IV

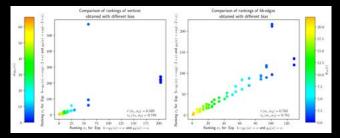


(a) First ranking: $g_V(x) = x$ and $g_E(x) = x$; Second ranking: $g_V(x) = e^{2x}$ and $g_E(x) = e^{2x}$.

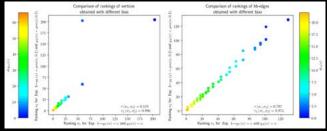


(b) First ranking: $g_V(x) = x$ and $g_E(x) = x$; Second ranking: $g_V(x) = x^2$ and $g_E(x) = x^2$.

Results and evaluation V



(c) First ranking: $g_V(x) = x$ and $g_E(x) = x$; Second ranking: $g_V(x) = e^{-2x}$ and $g_E(x) = e^{-2x}$.



(d) First ranking: $g_V(x) = x$ and $g_E(x) = x$; Second ranking: $g_V(x) = x^{0.2}$ and $g_E(x) = x^{0.2}$.

Conclusion & Future work

With these first results:

• There is an interest to apply different biases to explore differently the hb-graph => impact on hb-edges and nodes ranking

• Tunable diffusion to tune adequately the ranking of the facets

As FW:

Apply this approach to real cases:

- a publication database for refining queries
- an image case

Thank you for your attention!

Leveraging insight into your data network by viewing co-occurrences while navigating across different perspectives.

More information:

- http://collspotting.web.cern.ch
- https://www.infos-informatique.net
- xavier.ouvrard@cern.ch

Bibliography I

Matthias Dehmer and Abbe Mowshowitz. A history of graph entropy measures. Information Sciences, 181(1):57-78, 2011.

- Xavier Ouvrard, Jean-Marie Le Goff, and Stephane Marchand-Maillet. Diffusion by exchanges in hb-graphs: Highlighting complex relationships. CBMI Proceedings, 2018.
- Xavier Ouvrard, Jean-Marie Le Goff, and Stephane Marchand-Maillet. Diffusion by exchanges in hb-graphs: Highlighting complex relationships extended version. Arxiv:1809.00190v2, 2019.
- Vinko Zlatić, Andrea Gabrielli, and Guido Caldarelli. Topologically biased random walk and community finding in networks. Physical Review E, 82(6): 066109, 2010.