A heuristic for max-cut in toroidal grid graphs

Claudio Gentile¹

Giovanni Rinaldi¹

Esteban Salgado¹²

Bao Duy Tran³

¹Instituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti" - CNR, Italy

²Department of Computer, Control and Management Engineering Antonio Ruberti, Sapienza University of Rome, Italy

³Ruprecht-Karls-University Heidelberg, Germany

CTW 2020

Motivation

Statistical Physics

Ground state of spin glasses under the Ising model

Under this model the Hamiltonian of the system is defined by

$$H = -\sum_{\langle i,j\rangle} J_{ij}\sigma_i\sigma_j$$

- σ_i is the *i*-th spin.
- *J_{ij}* is the interaction energy between the *i*-th and the *j*-th particles.

The goal is to find the lowest energy state.

Max-cut

Max-cut

Given G = (V, E, w) the *max-cut problem* calls for a partition $(W : V \setminus W)$ of the node-set defining a maximal-weight edge-cut.

$$\max_{x \in \{-1,1\}^V} \frac{1}{2} \sum_{ij \in E} w_{ij} (1 - x_i x_j)$$

• $x_i = 1 \cdot \chi_{i \in W} - 1 \cdot \chi_{i \in V \setminus W}$

Algorithms: Subgraph sampling scheme

1. Select randomly a point $\hat{x} \in \{-1, 1\}^V$.

1. Select randomly a point $\hat{x} \in \{-1, 1\}^V$.

 Select a "suitable" set U ⊂ V contracting the nodes V \ U.

- 2. Select a "suitable" set $U \subset V$ contracting the nodes $V \setminus U$.
 - Apply *switching* to the nodes in $V \setminus U$ if needed.

$$\hat{x}_i \leftarrow 1 - \hat{x}_i$$

- 2. Select a "suitable" set $U \subset V$ contracting the nodes $V \setminus U$.
 - Apply *switching* to the nodes in $V \setminus U$ if needed.

$$\hat{x}_i \leftarrow 1 - \hat{x}_i$$

- 2. Select a "suitable" set $U \subset V$ contracting the nodes $V \setminus U$.
 - Apply *switching* to the nodes in $V \setminus U$ if needed.

$$\hat{x}_i \leftarrow 1 - \hat{x}_i$$

3. Solve max-cut over the "contracted" graph $G_{V \setminus U}$.

3. Solve max-cut over the "contracted" graph $G_{V \setminus U}$.

3. Solve max-cut over the "contracted" graph $G_{V \setminus U}$.

 Until a maximum number of non-improving iterations is not reached, select a new node-set U ⊂ V and go to step 2.

5. Perturb the current vector \hat{x} and repeat from step 2. until no more improvements take place.

5. Perturb the current vector \hat{x} and repeat from step 2. until no more improvements take place.

6. If additional computing time is allowed, the node assignment is randomly generated afresh and the process is restarted from step 2.

6. If additional computing time is allowed, the node assignment is randomly generated afresh and the process is restarted from step 2.

Algorithms: How to select *U*?

Algorithms: Planar subgraph

Algorithm (F. Liers and G. Pardella, 2012)

For arbitrary weighted planar graphs max-cut is solvable in $O(|V|^{\frac{3}{2}} \log(|V|))$

Algorithms: Negative subgraph

Theorem (S.T. McCormick, M.R. Rao and G. Rinaldi, 2003)

For graphs with all the non-negative-weighted edges adjacent to a single node, max-cut is solvable in polynomial time.

Numerical results

Data for the experiments

- 2d toroidal grids with 316×316 nodes.
- Graphs generated with rudy with edge-weights:
 - $\circ~$ bivariate ± 1 , with proportion p of negative edges.
 - following a standard Gaussian distribution.

Results

		Р		No complement				Complement			
р	S	val	time	it (avg)	val (avg)	%difP (avg/std)	time (avg)	it (avg)	val (avg)	%difP (avg/std)	time (avg)
40	1	89968	1612.79	6.70	89770.40	0.22 / 0.02	3681.97	3.20	89772.60	0.21/0.02	4013.31
	2	89978	1594.09	6.40	89768.80	0.23 / 0.01	3651.78	3.90	89779.00	0.22 / 0.01	4235.11
	3	90062	2438.43	5.70	89848.00	0.24 / 0.02	3499.65	2.80	89847.60	0.24 / 0.02	3857.10
	4	89952	1553.53	6.40	89731.60	0.25 / 0.01	3822.29	3.50	89735.80	0.24 / 0.02	3946.81
50	1	69984	1626.84	6.30	69773.20	0.30 / 0.02	3504.64	2.90	69780.00	0.29 / 0.01	3912.82
	2	70002	2444.74	6.50	69794.00	0.29 / 0.01	3701.30	3.30	69798.40	0.29 / 0.02	3977.30
	3	69956	1480.32	6.60	69741.60	0.31 / 0.02	3632.59	3.20	69749.00	0.30 / 0.02	3917.03
	4	70064	1473.25	6.50	69850.20	0.31 / 0.01	3812.63	3.30	69855.80	0.30 / 0.01	4048.55
60	1	49920	1609.70	7.40	49715.80	0.41 / 0.02	3717.88	3.60	49714.40	0.41/0.02	3850.08
	2	50094	1926.58	6.40	49879.20	0.42 / 0.02	3562.71	3.20	49888.80	0.40 / 0.02	3869.57
	3	50074	2485.99	6.70	49876.40	0.39 / 0.02	3662.16	2.90	49881.00	0.39 / 0.02	4035.61
	4	50000	1504.92	6.50	49791.40	0.42 / 0.01	3678.25	3.40	49804.80	0.39 / 0.02	4119.61
G	1	6528526722	1673.16	5.20	6457847194.60	1.08 / 0.02	3855.91	3.10	6452574600.70	1.16 / 0.03	4104.11
	2	6554507128	1688.89	5.50	6484463753.50	1.06 / 0.02	3871.09	3.30	6480230701.70	1.13 / 0.03	4067.86
	3	6548455479	1706.82	5.10	6476848337.70	1.09 / 0.03	3938.77	3.10	6473079819.30	1.15 / 0.03	4353.24
	4	6545055776	1659.93	5.20	6474477296.90	1.08 / 0.03	3870.45	3.50	6471527989.50	1.12 / 0.05	4297.28

Conclusions

- Over "bivariate" graphs:
 - *Negative subgraph* presents solutions within a relative difference between 0.21 and 0.42.

11/11

- Complement slightly improves the solution.
- Over "gaussian" graphs:
 - The results with both algorithms are weaker.
- Negative subgraph can be extended any graph topology.

A heuristic for max-cut in toroidal grid graphs

Claudio Gentile¹

Giovanni Rinaldi¹

Esteban Salgado¹²

Bao Duy Tran³

¹Instituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti" - CNR, Italy

²Department of Computer, Control and Management Engineering Antonio Ruberti, Sapienza University of Rome, Italy

³Ruprecht-Karls-University Heidelberg, Germany

CTW 2020

